Torsion of a growing shaft


Cite item

Full Text

Abstract

The torsion of a shaft by rigid disks is considered. The shaft has the form of circular cylinder. Two rigid disks are attached to its end faces. The process of continuous growth of such shaft under the influence of twisting torques applied to the disks is studied. Dual series equations which reflect the mathematical content of the problem at the different stages of the growing process are derived and solved. Results of the numerical analysis and singularities of the qualitative mechanical behaviour of the fundamental characteristics are discussed.

About the authors

Alexander V Manzhirov

A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences; National Engineering Physics Institute “MEPhI”; N. E. Bauman Moscow State Technical University

Email: manzh@inbox.ru
http://orcid.org/0000-0002-7578-6031 Dr. Phys. & Math. Sci., Professor; Deputy Director; Lab. of Modelling in Mechanics of Solids; Professor; Dept. of High Mathematics; Professor; Dept. of Applied Mathematics 101, pr. Vernadskogo, Moscow, 119526, Russian Federation; 31, Kashirskoe shosse, Moscow, 115409 Russian Federation; 5/1, 2-ya Baumanskaya st., Moscow, 105005, Russian Federation

Mikhail N Mikhin

Russian State University for the Humanities

Email: mmikhin@inbox.ru
Cand. Phys. & Math. Sci., Associate Professor; Associate Professor; Dept. of High Mathematics 9, Miusskaya pl., Moscow, 125993, Russian Federation

Evgenii V Murashkin

A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences; National Engineering Physics Institute “MEPhI”; N. E. Bauman Moscow State Technical University

Email: murashkin@ipmnet.ru
http://orcid.org/0000-0002-3267-4742 Cand. Phys. & Math. Sci.; Senior Researcher; Lab. of Modelling in Mechanics of Solids; Associate Professor; Dept. of High Mathematics; Associate Professor; Dept. of Applied Mathematics 101, pr. Vernadskogo, Moscow, 119526, Russian Federation; 31, Kashirskoe shosse, Moscow, 115409 Russian Federation; 5/1, 2-ya Baumanskaya st., Moscow, 105005, Russian Federation

References

  1. Aрутюнян Н. Х., Манжиров А. В., Наумов В. Э. Контактные задачи механики растущих тел. М.: Наука, 1991. 176 с.
  2. Aрутюнян Н. Х., Манжиров А. В. Контактные задачи теории ползучести. Ереван: Институт механики НАН, 1999. 320 с.
  3. Манжиров А. В. Общая безынерционная начально-краевая задача для кусочнонепрерывно наращиваемого вязкоупругого стареющего тела // ПММ, 1995. Т. 59, № 5. С. 836-848.
  4. Manzhirov A. V. Mechanics of growing solids and phase transitions // Key Engineering Materials, 2013. vol. 535-536. pp. 89-93. doi: 10.4028/ href='www.scientific.net/KEM.535-536.89' target='_blank'>www.scientific.net/KEM.535-536.89.
  5. Manzhirov A. V. Mechanics of growing solids: New track in mechanical engineering / ASME 2014 International Mechanical Engineering Congress and Exposition: Volume 9: Mechanics of Solids, Structures and Fluids (Montreal, Quebec, Canada, November 14-20, 2014). ASME, 2014. pp. V009T12A039. doi: 10.1115/IMECE2014-36712.
  6. Manzhirov A. V. Advances in the Theory of Surface Growth with Applications to Additive Manufacturing Technologies // Procedia Engineering, 2017. vol. 173. pp. 11-16. doi: 10.1016/j.proeng.2016.12.008.
  7. Manzhirov A. V., Gupta N. K. Fundamentals of Continuous Growth Processes in Technology and Nature // Procedia IUTAM, 2017. vol. 23. pp. 1-12. doi: 10.1016/j.piutam.2017.06.001.
  8. Manzhirov A. V. Mechanical design of viscoelastic parts fabricated using additive manufacturing technologies / Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 2015, WCE 2015. vol. 2 (London, U.K., July 1-3, 2015). IAENG, 2015. pp. 710-714, http://www.iaeng.org/publication/WCE2015/WCE2015_pp710-714.pdf.
  9. Manzhirov A. V. A method for mechanical design of am fabricated viscoelastic parts / Transactions on Engineering Technologies. Singapore: Springer, 2016. pp. 223-235. doi: 10.1007/978-981-10-1088-0_17.
  10. Manzhirov A. V. Fundamentals of mechanical design and analysis for am fabricated parts // Procedia Manufacturing, 2017. vol. 7. pp. 59-65. doi: 10.1016/j.promfg.2016.12.017.
  11. Sneddon I. N., Srivastav R. P., Mathur S. C. The Reissner-Sagoci problem for a long cylinder of finite radius // Q. J. Mechanics Appl. Math., 1966. vol. 19, no. 2. pp. 123-129. doi: 10.1093/qjmam/19.2.123.
  12. Srivastav R. P. Dual series relations. II. Dual relations involving Dini Series // Proc. R. Soc. Edinb. Sec., 1963. vol. 66, no. 3. pp. 161-172. doi: 10.1017/S0080454100007810.
  13. Watson G. N. A Treatise on the Theory of Bessel Functions. Second Edition. London: Cambridge University Press, 1966. vii+804 pp.
  14. Sneddon I. N., Srivastav R. P. Dual series relations. I. Dual relations involving FourierBessel series // Proc. R. Soc. Edinb. Sec. A, 1963. vol. 66, no. 3. pp. 150-160. doi: 10.1017/S0080454100007809.
  15. Srivastav R. P. Dual series relations. III. Dual relations involving trigonometric series // Proc. R. Soc. Edinb. Sec. A, 1963. vol. 66, no. 3. pp. 173-184. doi: 10.1017/S0080454100007822.
  16. Cooke J. C. The solution of triple and quadruple integral equations and Fourier-Bessel Series // Q. J. Mechanics Appl. Math., 1972. vol. 25, no. 2. pp. 247-263. doi: 10.1093/qjmam/25.2.247.
  17. Sneddon I. N., Tait B. J. The effect of a penny-shaped crack on the distribution of stress in a long circular cylinder // Int. J. Eng. Sc., 1963. vol. 1, no. 3. pp. 391-409. doi: 10.1016/0020-7225(63)90016-8.
  18. Polyanin A. D., Manzhirov A. V. Handbook of Integral Equations. Second Edition. Boca Raton, London: Chapman & Hall/ CRC Press, 2008. xxxiv+1108 pp.
  19. Manzhirov A. V. Mechanical design of am fabricated prismatic rods under torsion // MATEC Web of Conf., 2017. vol. 95, 12002. doi: 10.1051/matecconf/20179512002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).