Об одной вычислительной реализации блочного метода Гаусса-Зейделя для нормальных систем уравнений


Цитировать

Полный текст

Аннотация

Статья посвящена модификации блочного варианта метода Гаусса-Зейделя для нормальных систем уравнений, который является одним из достаточно эффективных методов решения, в общем случае переопределенных, систем линейных алгебраических уравнений большой размерности. Основным недостатком методов, основанных на нормальных системах уравнений, является тот факт, что число обусловленности нормальной системы равно квадрату числа обусловленности исходной задачи. Этот факт отрицательно влияет на скорость сходимости итерационных методов, основанных на нормальных системах уравнений. Для повышения скорости сходимости итерационных методов, основанных на нормальных системах уравнений, при решении плохо обусловленных задач в настоящее время используются различные варианты предобуславливателей, позволяющие снизить число обусловленности исходной системы уравнений. Однако универсального предобуславливателя для всех задач не существует. Одним из эффективных подходов, позволяющих повысить скорость сходимости итерационного метода Гаусса-Зейделя для нормальных систем уравнений, является использование его блочного варианта. Недостатком блочного метода Гаусса-Зейделя для нормальных систем является тот факт, что на каждой итерации необходимо вычислять псевдообратную матрицу. Известно, что нахождение псевдообратной матрицы является достаточно сложной вычислительной процедурой. В настоящей работе предлагается процедуру псевдообращения матрицы заменить на задачу решения нормальных систем уравнений методом Холецкого. Нормальные уравнения, возникающие на каждой итерации метода Гаусса-Зейделя, имеют сравнительно невысокую размерность по сравнению с исходной системой. Приводятся результаты вычислительных экспериментов, демонстрирующие эффективность предлагаемого подхода.

Об авторах

Александр Иванович Жданов

Самарский государственный технический университет

Email: zhdanovaleksan@yandex.ru
(д.ф.-м.н., проф.; zhdanovaleksan@yandex.ru), декан, факультет дистанционного и дополнительного образования; заведующий кафедрой, каф. Высшей математики и прикладной информатики Россия, 443100, Самара, ул. Молодогвардейская, 244

Екатерина Юрьевна Богданова

Самарский государственный технический университет

Email: fwinter@yandex.ru
аспирант, каф. высшей математики и прикладной информатики Россия, 443100, Самара, ул. Молодогвардейская, 244

Список литературы

  1. Saad Y. Basic Iterative Methods / Iterative Methods for Sparse Liner Systems. Philadelphia, PA, USA: SIAM, 2003. pp. 103-128. doi: 10.1137/1.9780898718003.ch4.
  2. Golub G. H., Van Loan C. F. Matrix Computations / Johns Hopkins Studies in Mathematical Sciences. Baltimore, London: Johns Hopkins University Press, 1996. xxvii+728 pp.
  3. Björck A. Linear Least Squares Problems / Numerical methods in matrix computations / Texts in Applied Mathematics, 59. Berlin: Springer, 2015. pp. 211-430. doi: 10.1007/ 978-3-319-05089-8_2.
  4. Young D., Rheinboldt W. Iterative Solutions of Large Linear Systems. New York: Academic Press, 1971. 572 pp. doi: 10.1016/c2013-0-11733-3.
  5. Ma A., Needell D., Ramdas A. Convergence Properties of the Randomized Extended Gauss-Seidel and Kaczmarz Methods // SIAM. J. Matrix Anal. Appl., 2015. vol. 36, no. 4. pp. 1590-1604. doi: 10.1137/15m1014425.
  6. Gill P. E., Murray W., Ponceleón D. B., Saunders M. A. Preconditioners for Indefinite Systems Arising in Optimization // SIAM. J. Matrix Anal. Appl., 1992. vol. 13, no. 1. pp. 292-311. doi: 10.1137/0613022.
  7. Benzi M. Preconditioning Techniques for Large Linear Systems: A Survey // Journal of Computational Physics, 2002. vol. 182, no. 2. pp. 418-477. doi: 10.1006/jcph.2002.7176.
  8. Benzi M., Tûma M. A comparative study of sparse approximate inverse preconditioners // Appl. Numer. Math., 1999. no. 2-3. pp. 305-340. doi: 10.1016/s0168-9274(98)00118-4.
  9. Bergamaschi L., Pini G., Sartoretto F. Approximate inverse preconditioning in the parallel solution of sparse eigenproblems // Numerical Linear Algebra with Applications, 2000. vol. 7, no. 3. pp. 99-116. doi: 10.1002/(sici)1099-1506(200004/05)7:3<99::aid-nla188>3.3.co;2-x.
  10. Benzi M., Joubert W. D., Mateescu G. Numerical experiments with parallel orderings for ILU preconditioners // Electronic Transactions on Numerical Analysis, 1999. vol. 8. pp. 88-114.
  11. Ильин В. П. Об итерационном методе Качмажа и его обобщениях // Сиб. журн. индустр. матем., 2006. Т. 9, № 3. С. 39-49.
  12. Gower R. M., Richtárik P. Randomized Iterative Methods for Linear Systems // SIAM. J. Matrix Anal. Appl., 2015. vol. 36, no. 4. pp. 1660-1690. doi: 10.1137/15m1025487.
  13. Strohmer T., Vershynin R. A Randomized Kaczmarz Algorithm with Exponential Convergence // J. Fourier Anal. Appl., 2009. vol. 15, no. 2. pp. 262-278. doi: 10.1007/s00041-008-9030-4.
  14. Жданов А. И., Сидоров Ю. В. Параллельная реализация рандомизированного регуляризованного алгоритма Качмажа // Комп. оптика, 2015. Т. 39, № 4. С. 536-541. doi: 10.18287/0134-2452-2015-39-4-536-541.
  15. Horn R. A., Johnson C. R. Matrix Analysis. Cambridge: Cambridge University Press, 1989. xviii+643 pp. doi: 10.1017/cbo9781139020411.
  16. Жданов А. И., Иванов А. А. Проекционный регуляризирующий алгоритм для решения некорректных линейных алгебраических систем большой размерности // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2010. № 21. С. 309-312. doi: 10.14498/vsgtu827.
  17. Малышев А. Н. Введение в вычислительную линейную алгебру. Новосибирск: Наука, 1991. 229 с.
  18. Гантмахер Ф. Р. Теория матриц. М.: Наука, 1966. 576 с.
  19. Беклемишев Д. В. Дополнительные главы линейной алгебры. М.: Наука, 1983. 336 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».