Obtaining exact analytical solutions for nonstationary heat conduction problems using orthogonal methods


Cite item

Full Text

Abstract

Through the interplay of orthogonal methods by L. V. Kantorovich, Bubnov-Galerkin and a heat balance integral method there have been obtained an exact analytical solution of a nonstationary heat conduction problem for an infinite plate under the symmetrical first-type boundary conditions. It was possible to obtain an exact solution through the employment of approximate methods due to the appliance of trigonometric coordinate functions, possessing the property of orthogonality. They enable us to determine eigenvalues not through the solution of the Sturm-Liouville boundary value problem, which supposes the second-order differential equation integration, but through the solution of a differential equation for an unknown function on time, which is the first-order equation. Due to the property of coordinate functions mentioned above, while determining constants of integration out of initial conditions it is possible to avoid solving large systems of algebraic linear equations with ill-conditioned matrix of coefficients. Thus, it simplifies both the process of obtaining a solution and its final formula and provides an opportunity to find not only an approximate, but also an exact analytical solution, represented by an infinite series.

About the authors

Vasiliy A Kudinov

Samara State Technical University

Email: totig@yandex.ru
Dr. Phys. & Math. Sci., Professor; Head of Dept.; Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Ruslan M Klebleev

Samara State Technical University

Email: uio1123@list.ru
Graduate Student; Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Ekaterina A Kuklova

Samara State Technical University

Email: kyklova_1993@mail.ru
Graduate Student; Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Канторович Л. В., Крылов В. И. Приближенные методы высшего анализа. Л.: Физматгиз, 1962. 708 с.
  2. Цой П. В. Методы расчета отдельных задач тепломассопереноса. М.: Энергия, 1971. 382 с.
  3. Кудинов В. А., Карташов Э. М., Калашников В. В. Аналитические решения задач тепломассопереноса и термоупругости для многослойных конструкций. М.: Высшая школа, 2005. 430 с.
  4. Кудинов В. А., Аверин Б. В., Стефанюк Е. В. Теплопроводность и термоупругость в многослойных конструкциях. М.: Высшая школа, 2008. 305 с.
  5. Лыков А. В. Теория теплопроводности. М.: Высшая школа, 1967. 600 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).