Block regularization Kaczmarz method
- Authors: Bogdanova E.Y.1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 20, No 3 (2016)
- Pages: 544-551
- Section: Articles
- URL: https://bakhtiniada.ru/1991-8615/article/view/20517
- DOI: https://doi.org/10.14498/vsgtu1493
- ID: 20517
Cite item
Full Text
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
Ekaterina Yu Bogdanova
Samara State Technical University
Email: fwinter@yandex.ru
Postgraduate Student, Dept. of Higher Mathematics & Applied Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation
References
- Тихонов А. Н., Арсений В. Я. Методы решения некорректных задач. М.: Наука, 1979. 284 с.
- Gill P. E., Murray W., Saunders M. A. Preconditioners for indefinite systems arising in optimization // SIAM. J. Matrix Anal. Appl., 1992. vol. 13, no. 1. pp. 292-311. doi: 10.1137/0613022.
- Benzi M. Preconditioning Techniques for Large Linear Systems: A Survey // J. Comput. Phys., 2002. vol. 182, no. 2. pp. 418-477. doi: 10.1006/jcph.2002.7176.
- Benzi M., Tuma M. A comparative study of sparse approximate inverse preconditioners // Appl. Numer. Math., 1999. vol. 30, no. 1-2. pp. 305-340. doi: 10.1016/S0168-9274(98)00118-4.
- Bergamaschi L., Pini G., Sartoretto F. Aproximate inverse preconditioning in the parallel solution of sparse eigenproblems // Numer. Linear Algebra Appl., 2000. vol. 7, no. 3. pp. 99-116. doi: 10.1002/(SICI)1099-1506(200004/05)7:3<99::AID-NLA188>3.0.CO;2-5.
- Benzi M., Joubert W. D., Mateescu G. Numerical experiments with parallel orderings for ILU preconditioners // ETNA. Electronic Transactions on Numerical Analysis, 1999. vol. 8. pp. 88-114, http://eudml.org/doc/119978.
- Bocs˛an Gh. Convergence of iterative methods for solving random operator equations // J. Nonlinear Sci. Appl., 2013. vol. 6, no. 1. pp. 2-6, http://www.tjnsa.com/includes/files/articles/Vol6_Iss1_2--6_Convergence_of_iterative_methods_fo.pdf.
- Gower R. M., Richtárik P. Randomized Iterative Methods for Linear Systems // SIAM. J. Matrix Anal. & Appl., 2015. vol. 36, no. 4. pp. 1660-1690, arXiv: 1506.03296 [math.NA].
- Жданов А. И., Сидоров Ю. В. Параллельная реализация рандомизированного регуляризованного алгоритма Качмажа // Компьютерная оптика, 2015. Т. 39, № 4. С. 536-541. doi: 10.18287/0134-2452-2015-39-4-536-541.
- Ivanov A. A., Zhdanov A. I. Kaczmarz algorithm for Tikhonov regularization problem // Applied Mathematics E-Notes, 2013. vol. 13. pp. 270-276, http://www.math.nthu.edu.tw/~amen/2013/1302252(final).pdf.
- Васильченко Г. П., Светлаков А. А. Проекционный алгоритм решения систем линейных алгебраических уравнений большой размерности // Ж. вычисл. матем. и матем. Физ., 1980. № 1. С. 3-10.
- Tanabe K. Projection method for solving a singular system of linear equation and its applications // Numer. Math., 1971. vol. 17, no. 3. pp. 203-214. doi: 10.1007/BF01436376.
- Strohmer T. A., Vershynin R. A randomized Kaczmarz algorithm for linear systems with exponential convergence // J. Fourier Anal. Appl., 2009. vol. 15. pp. 262-278. doi: doi: 10.1007/s00041-008-9030-4.
- Kaczmarz S. Angenäherte Auflösung von Systemen linearer Gleichungen // Bull. Int. Acad. Polon. Sci. A, 1937. vol. 35. pp. 335-357, http://jasonstockmann.com/Jason_Stockmann/Welcome_files/kaczmarz_english_translation_1937.pdf.
- Morozov V. A. Methods of Solving Incorrectly Posed Problems. New York: Springer Verlag, 1984. xviii+257 pp. doi: 10.1007/978-1-4612-5280-1.
- Hämarik U., Palm R., Raus T. A family of rules for parameter choice in Tikhonov regularization of ill-posed problems with inexact noise level // Comput. Appl. Math., 2012. vol. 236, no. 8. pp. 2146-2157. doi: 10.1016/j.cam.2011.09.037.
- Долишний В. В., Жданов А. И. Вычисление параметра регуляризации методом перекрестной значимости на основе эквивалентных нормальных расширенных систем / Труды седьмой Всероссийской научной конференции с международным участием: Информационные технологии в математическом моделировании. Часть 4 (3-6 июня 2010 г.) / Матем. моделирование и краев. задачи. Самара: СамГТУ, 2010. С. 52-55.
- Жданов А. И. Оптимальная регуляризация решений приближенных стохастических систем линейных алгебраических уравнений // Ж. вычисл. матем. и матем. физ., 1990. Т. 30, № 10. С. 1588-1593.
- Жданов А. И. Метод расширенных регуляризованных нормальных уравнений // Ж. вычисл. матем. и матем. физ., 2012. Т. 52, № 2. С. 205-208.
- Жданов А. И. Об одной модификации итерационного алгоритма Качмажа / Труды седьмой Всероссийской научной конференции с международным участием: Информационные технологии в математическом моделировании. Часть 4 (3-6 июня 2010 г.) / Матем. моделирование и краев. задачи. Самара: СамГТУ, 2010. С. 75-77.
Supplementary files
