Summation on the basis of combinatorial representation of equal powers
- Authors: Nikonov A.I1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 20, No 1 (2016)
- Pages: 149-157
- Section: Articles
- URL: https://bakhtiniada.ru/1991-8615/article/view/20489
- DOI: https://doi.org/10.14498/vsgtu1438
- ID: 20489
Cite item
Full Text
Abstract
In the paper the conclusion of combinatorial expressions for the sums of members of several sequences is considered. Conclusion is made on the basis of combinatorial representation of the sum of the weighted equal powers. The weighted members of a geometrical progression, the simple arithmeticgeometrical and combined progressions are subject to summation. One of principal places in the given conclusion occupies representation of members of each of the specified progressions in the form of matrix elements. The row of this matrix is formed with use of a gang of equal powers with the set weight factor. Besides, in work formulas of combinatorial identities with participation of free components of the sums of equal powers, and also separate power-member of sequence of equal powers or a geometrical progression are presented. All presented formulas have the general basis-components of the sums of equal powers.
Full Text
##article.viewOnOriginalSite##About the authors
Alexander I Nikonov
Samara State Technical University
Email: nikonovai@mail.ru
(Dr. Tech. Sci.; nikonovai@mail.ru), Professor, Dept. of Electronic Systems and Information Security 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation
References
- Coolidge J. L. The story of the Binomial Theorem // Amer. Math. Monthly, 1949. vol. 56, no. 3. pp. 147-157. doi: 10.2307/2305028.
- Lin Cong On Bernoulli Numbers and Its Properties, 2004. 7 pp., arXiv: math/0408082 [math.HO]
- Benjamin A. T., Plott S. S. A combinatorial approach to Fibonomial coefcients // Fibonacci Quarterly, 2008/2009. vol. 46/47, no. 1. pp. 7-9, URL: http://www.fq.math.ca/Papers1/46_47-1/Benjamin_11-08.pdf (дата обращения: 08.08.2015).
- Benjamin A. T., Greg O. P., Quinn J. J. A Stirling Encounter with Harmonic Numbers // Mathematics Magazine, 2002. vol. 75, no. 2. pp. 95-103. doi: 10.2307/3219141.
- Edwards A. W. F. Sums of Powers of Integers: A Little of the History // The Mathematical Gazette, 1982. vol. 66, no. 435. pp. 22-28. doi: 10.2307/3617302.
- Beery J. Sums of Powers of Positive Integers - Introduction: Convergence (July 2010), 2010. doi: 10.4169/loci003284.
- Никонов А. И. Преобразование суммы взвешенных степеней натуральных чисел с одинаковыми показателями // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2010. № 1(20). С. 258-262. doi: 10.14498/vsgtu751.
- Никонов А. И. Приведение суммы взвешенных одинаковых степеней к явному комбинаторному представлению // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 3(28). С. 163-169. doi: 10.14498/vsgtu1099.
- Arithmetic and Geometric Series in Ken Ward’s Mathematics Pages, URL: http://www.trans4mind.com/personal_development/mathematics/series/airthmeticGeometricSeries.htm (дата обращения: 08.08.2015).
- Riley K. F., Hobson M. P., Bence S. Y. Mathematical Methods for Physics and Engineering. Cambridge: Cambridge University Press, 2006, xxiv+1232 pp. doi: 10.1017/CBO9781139164979.
- Никонов А. И. Повышение эффективности шифрования на основе суммирования произведений // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2014. № 2(35). С. 199-207. doi: 10.14498/vsgtu1316.
- Graham R. L., Knuth D. E., Patashnik O. Concrete mathematics. A foundation for computer science. Reading, MA: Addison-Wesley Publishing Company, 1994. xiv+657 pp.
Supplementary files

