Mathematical modeling of deformation of reinforced femur during prolonged static loads


Cite item

Full Text

Abstract

A two-layer mathematical model of a human femur neck reinforced implants of different design for modeling stress-strain state which occurs during a surgical procedure to prevent femur neck fractures by the forced introduction of metallic implants is proposed. Engineered implant designs are provided. Methods and software for geometric modeling of femur embedded with the implants are developed. New boundary value problems to evaluate kinetics in creep conditions of the stress-strain state of reinforced and non-reinforced femoral neck during prolonged static loads corresponding to human foot traffic are formulated. Effective elastic properties of cortical and cancellous bone, power and kinematic boundary value problems. A phenomenological creep model for compact bone tissue is constructed. The technique of identifying the parameters is developed. A check of its adequacy to experimental data is carried out. Based on the finite element method the numerical method for solving the provided boundary value problems at macro level of continuum mechanics is developed. A lot of variative calculations allowed developing recommendations for the rational positioning of the implant in order to minimize stress concentrations. The performed analysis showed that there is a significant relaxation of stresses in the most loaded areas due to creep. Relaxation is more intense in reinforced femoral neck than in the unreinforced. Thus the tension in the most loaded femoral neck area due to creep is reduced by 49 % with respect to the intensity of the initial time of loading for femur which is reinforced by the spoke-spoke-type implant when loading duration is 1 year under natural loads corresponding to human foot traffic. It was found that the time component (long-term fixed load) does not impair the positive effect of reducing the stress concentration due to a femoral neck reinforcement which is a positive fact from the medical practice point of view.

About the authors

Vladimir P Radchenko

Samara State Technical University

Email: radch@samgtu.ru
(Dr. Phys. & Math. Sci.; radch@samgtu.ru, Corresponding Author), Head of Dept., Dept. of Applied Mathematics & Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Anatoliy V Nekhozhin

Samara State Technical University

Email: stswoon@yandex.ru
Postgraduate Student, Dept. of Applied Mathematics & Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Матвеев А. Л. Оперативный способ профилактики переломов шейки бедренной кости: Патент РФ на на изобретение № 2316280 от 10.02.2008.
  2. Матвеев А. Л., Нехожин А. В. Устройство для армирования шейки бедренной кости и превентивной профилактики переломов: Патент РФ на на изобретение № 98901 от 10.11.2010.
  3. Матвеев А. Л., Нехожин А. В., Минасов Т. Б., Фролов А. В. Устройство для армирования кости и профилактики переломов ее при остеопорозе: Патент РФ на на изобретение № 121725 от 10.11.2012.
  4. Матвеев А. Л., Нехожин А. В., Минасов Т. Б., Степанов О. Н., Дубров В. Э. Устройство для профилактического армирования и предупреждения переломов проксимального отдела бедра: Патент РФ на на изобретение № 136703 от 20.01.2014.
  5. Радченко В. П., Нехожин А. В., Матвеев А. Л. Математическое моделирование напряжённого состояния армированной костной ткани шейки бедра при статических нагрузках // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2011. № 4(25). С. 75-81. doi: 10.14498/vsgtu1037.
  6. Афанасьев Ю. И., Юрина Н. А., Котовский Е. Ф. Гистология. М.: Медицина, 2002. 774 с.
  7. Рогожников Г. И., Конюхова С. Г., Няшин Ю. И., Чернопазов С. А., Еремина С. В. Влияние модуля упругости губчатой и кортикальной кости на напряженное состояние в области пластинчатого имплантата при окклюзионной нагрузке // Российский журнал биомеханики, 2004. Т. 8, № 1. С. 54-60.
  8. Нехожин А. В. Двухслойная математическая модель шейки бедра человека для исследования напряжённого состояния при армировании имплантатами различной конструкции // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013. № 3(32). С. 129-135. doi: 10.14498/vsgtu1254.
  9. Минасов Т. Б., Матвеев А. Л., Нехожин А. В. Прочностные характеристики проксимального отдела бедренной кости в условиях внутреннего силового шунтирования // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013. № 4(33). С. 98-106. doi: 10.14498/vsgtu1270.
  10. Минасов Б. Ш., Ханин М. Ю., Якупов Р. Р., Минасов Т. Б. Результаты стендовых испытаний системы кость-имплантат-кость в условиях стандартного остеосинтеза при переломах проксимального отдела бедра // Казанский медицинский журнал, 2010. № 1. С. 40-44.
  11. Кнетс И. В., Вилкс Ю. К. Ползучесть компактной костной ткани человека при растяжении // Механика композитных материалов, 1975. № 4. С. 634-638.
  12. Мелнис А. Э., Кнетс И. В., Моорлат П. А. Особенности деформирования компактной костной ткани человека при ползучести в условиях растяжения // Механика композитных материалов, 1979. № 5. С. 861-867.
  13. Мелнис А. Э., Лайзан Я. Б. Нелинейная ползучесть компактной костной ткани человека при растяжении // Механика полимеров, 1978. № 1. С. 97-100.
  14. Радченко В. П., Шапиевский Д. В. Математическая модель ползучести микронеоднородного нелинейно-упругого материала // ПМТФ, 2008. Т. 49, № 3. С. 157-163.
  15. Harlan N. Titanium Bone Implants // Materials Technology, 2000. vol. 15, no. 3. pp. 185-187.
  16. Harlan N., Reyes R., Bourell D. L., Beaman J. J. Titanium Castings using Laser Scanned Data and Selective Laser Sintered Zirconia Molds // Journal of Materials Engineering and Performance, 2001. vol. 10, no. 4. pp. 410-413. doi: 10.1361/105994901770344818.
  17. Harlan N., Reyes R., Bourell D. L. Building Better Bones // Foundry Management & Technology, 2000. vol. 128, no. 8. pp. 82-83.
  18. Лайуни Р. К вопросу о механических свойствах костной ткани / Физическое воспитание студентов творческих специальностей. Т. 4. Харьков, 2002. С. 18-22.
  19. Brown C., Norman T. L., Kish V. L., Blaha J. D. Transverse Creep Response in Human Femoral Bone / American Society of Biomechanics, 1999. pp. 164-165, Available at http: //works.bepress.com/timothy_norman/123/ (September 18, 2015).
  20. Reilly D. T., Burstein A. H. The elastic and ultimate properties of compact bone tissue // Journal of Biomechanics, 1975. vol. 8, no. 6. pp. 393-405. doi: 10.1016/0021-9290(75)90075-5.
  21. Svesnsson N. L., Valliappan S., Wood R. D. Stress analysis of human femur with implanted charnley prosthesis // Journal of Biomechanics, 1977. vol. 10, no. 9. pp. 581-588. doi: 10.1016/0021-9290(77)90038-0.
  22. Huiskes R., Janssen J. D., Slooff T. J. A detailed comparison of experimental and theoretical stress analyses of a human femur / Mechanical Properties of Bone. vol. 45; ed. S. C. Owin. New York: ASME, 1981. pp. 211-234.
  23. Lang S. B. Elastic coefficients of animal bone // Science, 1969. vol. 165, no. 3890. pp. 287-288. doi: 10.1126/science.165.3890.287.
  24. Van Buskirk W. C., Ashman R. B. The elastic moduli of bone / Mechanical Properties of Bone. vol. 45; ed. S. C. Owin. New York: ASME, 1981. pp. 131-143.
  25. Винц Х. Изменение механических свойств компактной костной ткани человека в зависимости от возраста // Механика полимеров, 1975. № 11. С. 659-663.
  26. Работнов Ю. Н. Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.
  27. Утенькин А. А. Кость - многоэтажный композит // Химия и жизнь, 1981. № 4. С. 38-40.
  28. Минасов Т. Б., Стрижков А. Е., Бакусов Л. М., Насыров Р. В. Структурная самоорганизация костной ткани и ее механизмы как источник диагностической информации. Уфа, 2010. 116 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».