Задача Коши для уравнения параболического типа с оператором Бесселя и частной производной Римана-Лиувилля
- Авторы: Хуштова Ф.Г.1
-
Учреждения:
- Институт прикладной математики и автоматизации
- Выпуск: Том 20, № 1 (2016)
- Страницы: 74-84
- Раздел: Статьи
- URL: https://bakhtiniada.ru/1991-8615/article/view/20480
- DOI: https://doi.org/10.14498/vsgtu1455
- ID: 20480
Цитировать
Полный текст
Аннотация
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Фатима Гидовна Хуштова
Институт прикладной математики и автоматизации
Email: khushtova@yandex.ru
научный сотрудник, отдел САПР смешанных систем и управления Россия, 360000, Нальчик, ул. Шортанова, 89 а
Список литературы
- Нахушев А. М. Дробное исчисление и его применение. М.: Физматлит, 2003. 272 с.
- Псху А. B. Уравнения в частных производных дробного порядка. М.: Наука, 2005. 199 с.
- Терсенов С. А. Параболические уравнения с меняющимся направлением времени. М.: Наука, 1985. 105 с.
- Arena O. On a Singular Parabolic Equation Related to Axially Symmetric Heat Potentials // Annali di Matematica Pura ed Applicata, 1975. vol. 105, no. 1. pp. 347-393. doi: 10.1007/BF02414938.
- Ворошилов А. А., Килбас А. А. Задача типа Коши для диффузионно-волнового уравнения с частной производной Римана-Лиувилля // Доклады Академии наук, 2006. Т. 406, № 1. С. 12-16.
- Геккиева С. Х. Задача Коши для обобщенного уравнения переноса с дробной по времени производной // Доклады Адыгской (Черкесской) Международной академии наук, 2000. Т. 5, № 1. С. 16-19.
- Ворошилов А. А., Килбас А. А. Задача Коши для диффузионно-волнового уравнения с частной производной Капуто // Дифференц. уравнения, 2006. Т. 42, № 5. С. 599-609.
- Кочубей А. Н. Задача Коши для эволюционных уравнений дробного порядка // Дифференц. уравнения, 1989. Т. 25, № 8. С. 1359-1368.
- Кочубей А. Н. Диффузия дробного порядка // Дифференц. уравнения, 1990. Т. 26, № 4. С. 660-670.
- Псху А. В. Фундаментальное решение диффузионно-волнового уравнения дробного порядка // Изв. РАН. Сер. матем., 2009. Т. 73, № 2. С. 141-182. doi: 10.4213/im2429.
- Мамчуев М. О. Видоизмененная задача типа Коши для нагруженного параболического уравнения второго порядка с постоянными коэффициентами // Доклады Адыгской (Черкесской) Международной академии наук, 2012. Т. 14, № 2. С. 22-28.
- Metzler R., Glöckle W. G., Nonnenmacher T. F. Fractional model equation for anomalous diffusion // Physica A: Statistical Mechanics and its Applications, 1994. vol. 211, no. 1. pp. 13-24. doi: 10.1016/0378-4371(94)90064-7.
- Giona M., Roman H. E. Fractional diffusion equation on fractals: one-dimensional case and asymptotic behavior // Phys. A: Math. Gen., 1992. vol. 25, no. 8. pp. 2093-2105. doi: 10.1088/0305-4470/25/8/023.
- Metzler R., Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach // Physics Reports, 2000. vol. 339, no. 1. pp. 1-77. doi: 10.1016/s0370-1573(00)00070-3.
- Metzler R., Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics // Phys. A: Math. Gen., 2004. vol. 37, no. 31. pp. R161-R208. doi: 10.1088/0305-4470/37/31/r01.
- Учайкин В. В. Анизотропия космических лучей в дробно-дифференциальных моделях аномальной диффузии // ЖЭТФ, 2013. Т. 143, № 6. С. 1039-1047. doi: 10.7868/S0044451013060037.
- Uchaikin V. V. Fractional Derivatives for Physicists and Engineers / Nonlinear Physical Science. vol. I: Background and Theory. Berlin: Springer, 2013. xii+385 pp. doi: 10.1007/978-3-642-33911-0.
- Gorenflo R., Luchko Y., Mainardi F. Analytical properties and applications of the Wright function // Fractional Calculus and Applied Analysis, 1999. vol. 2, no. 4. pp. 383-414, arXiv: math-ph/0701069.
- Прудников А. П., Брычков Ю. А., Маричев О.И. Интегралы и ряды. Т. 3: Специальные функции. Дополнительные главы. М.: Наука, 2003. 688 с.
- Kilbas A. A., Saigo M. H-Transform. Theory and Applications / Analytical Methods and Special Functions. vol. 9. Boca Raton, etc.: Chapman and Hall, 2004. xii+389 pp.
- Маричев О. И. Метод вычисления интегралов от специальных функций (теория и таблицы формул). Мн.: Наука и техника, 1978. 312 с.
- Кузнецов Д. С. Специальные функции. М.: Высшая школа, 1965. 248 с.
- Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G. Higher transcendental functions. vol. II. / Bateman Manuscript Project. New York, Toronto, London: McGraw-Hill Book Co., 1953. xvii+396 pp.
- Хуштова Ф. Г. Фундаментальное решение модельного уравнения аномальной диффузии дробного порядка // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2015. Т. 19, № 4. С. 722-735. doi: 10.14498/vsgtu1445.
Дополнительные файлы
