An internal boundary value problem with the Riemann-Liouville operator for the mixed type equation of the third order


Cite item

Full Text

Abstract

The unique solvability of the internal boundary value problem is investigated for the mixed type equation of the third order with Riemann-Liouville operators in boundary condition. The uniqueness theorem is proved for the different orders of operators of fractional integro-differentiation when the inequality constraints on the known functions exist. The existence of solution is verified by the method of reduction to Fredholm equations of the second kind, which unconditional solvability follows from the uniqueness of the solution of the problem.

About the authors

Oleg A Repin

Samara State Economic University

Email: matstat@mail.ru
(Dr. Phys. & Math. Sci., Professor; matstat@mail.ru; Corresponding Author), Head of Department, Dept. of Mathematical Statistics and Econometrics 141, Sovetskoy Armii st., Samara, 443090, Russian Federation

Svetlana K Kumykova

Kabardino-Balkarian State University

Email: bsk@rect.kbsu.ru
(Cand. Phys. & Math. Sci.; bsk@rect.kbsu.ru), Associate Professor, Dept. of Mathematical Analysis and Theory of Functions 173, Chernyshevskogo st., Nalchik, 360004, Russian Federation

References

  1. Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
  2. Нахушев А. М. Дробное исчисление и его применение. М.: Физматлит, 2003. 272 с.
  3. Нахушев А. М. Задачи со смещением для уравнений в частных производных. М.: Наука, 2006. 287 с.
  4. Репин О. А., Кумыкова С. К. Нелокальная задача для уравнения смешанного типа, порядок которого вырождается вдоль линии изменения типа // Изв. вузов. Матем., 2013. № 8. С. 57-65.
  5. Репин О. А., Кумыкова С. К. Об одной нелокальной задаче для уравнения смешанного типа третьего порядка с кратными характеристиками // Дифференц. Уравнения, 2015. Т. 51, № 6. С. 755-763. doi: 10.1134/S0374064115060072.
  6. Репин О. А., Кумыкова С. К. Задача со смещением для уравнения третьего порядка с разрывными коэффициентами // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 4(29). С. 17-25. doi: 10.14498/vsgtu1123.
  7. Бицадзе А. В. Некоторые классы уравнений в частных производных. М.: Наука, 1981. 448 с.
  8. Кумыкова С. К. Об одной задаче с нелокальными краевыми условиями на характеристиках для уравнения смешанного типа // Дифференц. уравнения, 1974. Т. 10, № 1. С. 78-88.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).