Рассеяние вихрей в абелевых моделях Хиггса на компактных римановых поверхностях


Цитировать

Полный текст

Аннотация

Абелевы модели Хиггса на римановых поверхностях являются естественным обобщением абелевой (2 + 1)-мерной модели Хиггса на плоскости, возникающей в теории сверхпроводимости. В модели на плоскости ранее было доказано, что при «медленном» движении двух вихрей (нулей поля Хиггса) после лобового столкновения они испытывают рассеяние под прямым углом, а при симметричном столкновении N вихрей под равными углами происходит рассеяние на угол π/N . В критическом случае (при значении параметра модели, равном единице) этот результат можно получить с помощью так называемого адиабатического принципа, который утверждает, что динамические решения модели с малой кинетической энергией могут быть приближены геодезическими на пространстве модулей статических решений в метрике, задаваемой кинетической энергией (кинетической метрике). Адиабатический принцип в абелевой (2+1)-мерной модели Хиггса в критическом случае был недавно строго обоснован. Хотя явный вид метрики не удается выписать даже в случае двух вихрей, наличие требуемых геодезических удается установить, пользуясь гладкостью метрики в координатах, задаваемых симметрическими функциями положений вихрей, и свойствами симметрии метрики. Локальный аналог этого результата можно доказать, пользуясь только гладкостью кинетической метрики. Это позволяет предположить, что локальный вариант утверждения о рассеянии N вихрей на угол π/N при симметричном столкновении переносится на случай моделей на римановых поверхностях. В работе показано, что наличие геодезических кинетической метрики, описывающих требуемое поведение вихрей, в моделях на компактных римановых поверхностях следует из гладкости кинетической метрики в симметрических координатах в окрестности точек столкновения всех вихрей. Указанное свойство гладкости доказано в случае компактных римановых поверхностей. Применив адиабатический принцип для моделей на римановых поверхностях, можно получить утверждение о локальном рассеянии медленно движущихся вихрей в динамических моделях на компактных римановых поверхностях. К сожалению, этот адиабатический принцип еще нуждается в строгом обосновании.

Об авторах

Роман Витальевич Пальвелев

Московский государственный университет им. М. В. Ломоносова

Email: palvelev@mi.ras.ru
(к.ф.-м.н.; palvelev@mi.ras.ru), доцент, каф. теории функций и функционального анализа Россия, 119899, Москва, Воробьёвы гор

Список литературы

  1. Пальвелев Р. В. Рассеяние вихрей в абелевых моделях Хиггса на компактных римановых поверхностях / Четвертая международная конференция «Математическая физика и ее приложения»: материалы конф.; ред. чл.-корр. РАН И. В. Волович; д.ф.-м.н., проф. В. П. Радченко. Самара: СамГТУ, 2014. С. 278-279.
  2. Jaffe A., Taubes C. Vortices and monopoles: structure of static gauge theories / Progress in Physics. vol. 2. Boston, Basel, Stuttgart: Birkhäuser Verlag, 1980. 287 pp.
  3. Manton N. S. A remark on the scattering of BPS monopoles // Phys. Lett. B, 1982. vol. 110, no. 1. pp. 54-56. doi: 10.1016/0370-2693(82)90950-9.
  4. Ruback P. J. Vortex string motion in the Abelian Higgs model // Nucl. Phys. B, 1988. vol. 296, no. 3. pp. 669-678. doi: 10.1016/0550-3213(88)90038-7.
  5. Сергеев А. Г., Чечин С. В. О рассеянии медленно движущихся вихрей в абелевой (2 + 1)-мерной модели Хиггса // ТМФ, 1990. Т. 85, № 3. С. 397-411.
  6. Samols T. M. Vortex scattering // Commun. Math. Phys., 1992. vol. 145, no. 1. pp. 149-179. doi: 10.1007/bf02099284.
  7. Stuart D. Dynamics of Abelian Higgs vortices in the near Bogomolny regime // Commun. Math. Phys., 1994. vol. 159, no. 1. pp. 51-91. doi: 10.1007/bf02100485.
  8. Пальвелев Р. В. Рассеяние вихрей в абелевой модели Хиггса // ТМФ, 2008. Т. 156, № 1. С. 77-91. doi: 10.4213/tmf6231.
  9. Пальвелев Р. В., Сергеев А. Г. Обоснование адиабатического принципа для гиперболических уравнений Гинзбурга-Ландау / Математическая теория управления и дифференциальные уравнения: Сборник статей. К 90-летию со дня рождения академика Евгения Фроловича Мищенко / Тр. МИАН, Т. 277. М.: МАИК, 2012. С. 199-214.
  10. Stuart D. M. A. Periodic solutions of the Abelian Higgs model and rigid rotation of vortices // Geometric And Functional Analysis, 1999. vol. 9, no. 3. pp. 568-595. doi: 10.1007/s000390050096.
  11. Bradlow S. B. Vortices in holomorphic line bundles over closed Kähler manifolds // Commmun. Math. Phys., 1990. vol. 135, no. 1. pp. 1-17. doi: 10.1007/bf02097654.
  12. Kazdan J. L., Warner F. L. Curvature functions for compact 2-manifolds // Ann. Math., 1974. vol. 99, no. 1. pp. 14-47. doi: 10.2307/1971012.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».