Bigravity in Hamiltonian formalism
- Authors: Soloviev V.O1
-
Affiliations:
- Institute for High Energy Physics, NRC “Kurchatov Institute”
- Issue: Vol 19, No 1 (2015)
- Pages: 105-116
- Section: Articles
- URL: https://bakhtiniada.ru/1991-8615/article/view/20434
- DOI: https://doi.org/10.14498/vsgtu1388
- ID: 20434
Cite item
Full Text
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
Vladimir O Soloviev
Institute for High Energy Physics, NRC “Kurchatov Institute”
Email: Vladimir.Soloviev@ihep.ru
(Dr. Phys. & Math. Sci.; Vladimir.Soloviev@ihep.ru), Senior Research Associate, Division of Theoretical Physics 1, Ploschad’ Nauki, Protvino, Moskovskaya obl., 142281, Russian Federation
References
- Соловьев В. О. Бигравитация в гамильтоновом формализме / Четвертая международная конференция «Математическая физика и ее приложения»: материалы конф.; ред. чл.-корр. РАН И. В. Волович; д.ф.-м.н., проф. В. П. Радченко. Самара: СамГТУ, 2014. С. 334-335.
- Rosen N. General Relativity and Flat Space. I // Phys. Rev., 1940. vol. 57, no. 2. pp. 147-150. doi: 10.1103/physrev.57.147.
- Rosen N. General Relativity and Flat Space. II // Phys. Rev., 1940. vol. 57, no. 2. pp. 150-153. doi: 10.1103/physrev.57.150.
- Rosen N. Flat-space metric in general relativity theory // Ann. of Phys., 1963. vol. 22, no. 1. pp. 1-11. doi: 10.1016/0003-4916(63)90293-8.
- Rosen N. A bi-metric theory of gravitation // Gen. Rel. Grav., 1973. vol. 4, no. 6. pp. 435-447. doi: 10.1007/bf01215403.
- Isham C. J., Salam A., Strathdee J. Spontaneous breakdown of conformal symmetry // Phys. Lett. B, 1970. vol. 31, no. 5. pp. 300-302. doi: 10.1016/0370-2693(70)90177-2.
- Isham C. J., Salam A., Strathdee J. f -Dominance of Gravity // Phys. Rev. D, 1971. vol. 3, no. 4. pp. 867-873. doi: 10.1103/physrevd.3.867.
- Zumino B. Effective Lagrangians and broken symmetries / Lectures on Elementary Particles and Quantum Field Theory. vol. 2; eds. S. Deser, M. Grisaru, H. Pedleton. Cambridge, MA: MIT Press, 1970. pp. 437-500.
- Damour T., Kogan I. I. Effective Lagrangians and universality classes of nonlinear bigravity // Phys. Rev. D, 2002. vol. 66, no. 10, 104024. 17 pp., arXiv: hep-th/0206042. doi: 10.1103/physrevd.66.104024.
- de Rham C., Gabadadze G., Tolley A. J. Resummation of Massive Gravity // Phys. Rev. Lett., 2011. vol. 106, no. 23, 231101. 4 pp., arXiv: 1011.1232 [hep-th]. doi: 10.1103/physrevlett.106.231101.
- de Rham C., Gabadadze G., Tolley A. J. Ghost free massive gravity in the Stückelberg language // Phys. Lett. B, 2012. vol. 711, no. 2. pp. 190-195, arXiv: 1107.3820 [hep-th]. doi: 10.1016/j.physletb.2012.03.081.
- Boulware D. G., Deser S. Can Gravitation Have a Finite Range? // Phys. Rev. D, 1972. vol. 6, no. 12. pp. 3368-3382. doi: 10.1103/physrevd.6.3368.
- Hassan S. F., Rosen R. A. Bimetric gravity from ghost-free massive gravity // J. High Energ. Phys. vol. 2012, no. 2, 126, arXiv: 1109.3515 [hep-th]. doi: 10.1007/jhep02(2012)126.
- Hassan S. F., Rosen R. A. Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity // J. High Energ. Phys., 2012. vol. 2012, no. 4, 123, arXiv: 1111.2070 [hep-th]. doi: 10.1007/jhep04(2012)123.
- Hinterbichler K., Rosen R. A. Interacting spin-2 fields // J. High Energ. Phys., 2012. vol. 2012, no. 7, 047, arXiv: 1203.5783 [hep-th]. doi: 10.1007/jhep07(2012)047.
- Alexandrov S., Krasnov K., Speziale S. Chiral description of massive gravity // J. High Energ. Phys., 2013. vol. 2013, no. 6, 068, arXiv: 1212.3614 [hep-th]. doi: 10.1007/JHEP06(2013)068.
- Alexandrov S. Canonical structure of tetrad bimetric gravity // Gen. Rel. Grav., 2014. vol. 46, no. 1, 1639, arXiv: 1308.6586 [hep-th]. doi: 10.1007/s10714-013-1639-1.
- Kluson J. Hamiltonian formalism of bimetric gravity in vierbein formulation // Eur. Phys. J. C. vol. 74, no. 8, 2985, arXiv: 1307.1974 [hep-th]. doi: 10.1140/epjc/s10052-014-2985-1.
- Soloviev V. O. Bigravity in tetrad Hamiltonian formalism and matter couplings, 2014. 25 pp., arXiv: 1410.0048 [hep-th].
- Соловьев В. О., Чичикина М. В. Бигравитация в гамильтоновом формализме Кухаржа. Общий случай // ТМФ, 2013. Т. 176, № 3. С. 393-407. doi: 10.4213/tmf8450.
- Soloviev V. O., Tchichikina M. V. Bigravity in Kuchar's Hamiltonian formalism. 2. The special case // Phys. Rev. D, 2013. vol. 88, no. 8, 084026, arXiv: 1302.5096 [hep-th]. doi: 10.1103/PhysRevD.88.084026.
- Comelli D., Crisostomi M., Nesti F., Pilo L. Degrees of freedom in massive gravity // Phys. Rev. D, 2012. vol. 86, no. 10, 101502(R), arXiv: 1204.1027 [hep-th]. doi: 10.1103/physrevd.86.101502.
- Comelli D., Nesti F., Pilo L. Weak massive gravity // Phys. Rev. D, 2013. vol. 87, no. 12, arXiv: 1302.4447 [hep-th]. doi: 10.1103/physrevd.87.124021.
- Comelli D., Nesti F., Pilo L. Massive gravity: a general analysis // J. High Energ. Phys., 2013. vol. 2013, no. 7, 161, arXiv: 1305.0236 [hep-th]. doi: 10.1007/jhep07(2013)161.
- Arnowitt R., Deser S., Misner Ch. W. The Dynamics of General Relativity, Chapter 7 /Gravitation: an introduction to current research; ed. L. Witten: Wiley, 1962. pp. 227-265
- Arnowitt R., Deser S., Misner Ch. W. Republication of: The dynamics of general relativity // Gen. Relativ. Gravit. vol. 40, no. 9. pp. 1997-2027, arXiv: gr-qc/0405109. doi: 10.1007/s10714-008-0661-1.
- Kuchař K. Geometry of hyperspace. I // J. Math. Phys., 1976. vol. 17, no. 5. pp. 777-791. doi: 10.1063/1.522976.
- Kuchař K. Kinematics of tensor fields in hyperspace. II // J. Math. Phys., 1976. vol. 17, no. 5. pp. 792-800. doi: 10.1063/1.522977.
- Kuchař K. Dynamics of tensor fields in hyperspace. III // J. Math. Phys., 1976. vol. 17, no. 5. pp. 801-820. doi: 10.1063/1.522978.
- Kuchař K. Geometrodynamics with tensor sources. IV // J. Math. Phys., 1977. vol. 18, no. 8. pp. 1589-1597. doi: 10.1063/1.523467.
- Fairlie D., Leznov A. General solutions of the Monge-Ampère equation in n-dimensional space // J. Geom. Phys., 1995. vol. 16, no. 4. pp. 385-390, arXiv: hep-th/9403134. doi: 10.1016/0393-0440(94)00035-3.
Supplementary files
