Computer simulation of microstructures and processes of granular composites fracture taking into account the influence of grain boundaries
- Authors: Mullahmetov M.N.1, Ilinykh A.V.1
-
Affiliations:
- Perm State National Research Polytechnical University
- Issue: Vol 27, No 1 (2023)
- Pages: 81-101
- Section: Mechanics of Solids
- URL: https://bakhtiniada.ru/1991-8615/article/view/145891
- DOI: https://doi.org/10.14498/vsgtu1931
- ID: 145891
Cite item
Full Text
Abstract
The paper presents the algorithm for computer simulation of polycrystalline material microstructures with explicitly distinguished grain boundaries. The algorithm is based on the procedure of “growing” structure grains from ellipses, the geometric parameters of which can be set according to different laws of statistical distribution. The grain boundaries of the given thickness are formed from the original granular structure by displacing the boundaries inside the grain. The advantage of the presented algorithm is the possibility of obtaining nonlinear grain boundaries of different thicknesses, the width of which can be specified according to various statistical distribution laws. Polycrystalline material microstructure generation results that contain more than 100 structural elements and have a grain boundary fraction of up to 20 % are presented. New data on computer simulation of the deformation process and fracture of simulated granular materials are presented with different ratios of strength characteristics of grains and grain boundaries. It was revealed that, depending on the strength characteristics ratio value, different fracture mechanisms are realized in the material: intercrystalline, transcrystalline, and mixed forms of fracture.
About the authors
Maksim N. Mullahmetov
Perm State National Research Polytechnical University
Author for correspondence.
Email: m.mullahmetov59@gmail.com
ORCID iD: 0000-0002-0884-8327
Laboratory Assistant; Center for Experimental Mechanics
Russian Federation, 614990, Perm, Komsomolskiy pr., 29Artem V. Ilinykh
Perm State National Research Polytechnical University
Email: ilinih@yandex.ru
ORCID iD: 0000-0001-9162-1053
Scopus Author ID: 44761240700
ResearcherId: F-1778-2014
Cand. Techn. Sci.; Center for Experimental Mechanics; Dept. of Experimental Mechanics and Structural Materials Science
Russian Federation, 614990, Perm, Komsomolskiy pr., 29References
- Wil’deman V. E., Tret’yakov M. P., Tret’yakova T. V., et al. Eksperimental’nye issledovaniia svoistv materialov pri slozhnykh termomekhanicheskikh vozdeistviiakh [Experimental Investigations of Material Properties under Complex Thermomechanical Actions], ed. V. E. Wil’deman. Moscow, Fizmatlit, 2012, 204 pp. (In Russian). EDN: UGLGZL.
- Volegov P. S., Gribov D. S. Trusov P. V. Damage and fracture: Classical continuum theories, Phys. Mesomech., 2017, vol. 20, no. 2, pp. 157–173. EDN: XNDXWL. DOI: https://doi.org/10.1134/S1029959917020060.
- Yankin A. S. Biharmonic (two-frequency) load frequencies influence on mechanical behavior of solid propellant simulator, PNRPU Mechanics Bulletin, 2015, no. 4, pp. 273–292. EDN: VBWYNN. DOI: https://doi.org/10.15593/perm.mech/2015.4.16.
- Balokhonov R., Romanova V., Kulkov A. Microstructure-based analysis of deformation and fracture in metal-matrix composite materials, Eng. Fail. Anal., 2020, vol. 110, 104412. EDN: KTCEOH. DOI: https://doi.org/10.1016/j.engfailanal.2020.104412.
- Liang K., Xie L., He B., et al. Effects of grain size distributions on the macro-mechanical behavior of rock salt using micro-based multiscale methods, Int. J. Rock Mech. Mining Sci., 2021, vol. 138, 104592. DOI: https://doi.org/10.1016/j.ijrmms.2020.104592.
- Naderi S., Dean J. S., Zhang M. Three-dimensional virtual microstructure generation of porous polycrystalline ceramics, Ceramics International, 2019, vol. 45, no. 17, pp. 21647–21656. DOI: https://doi.org/10.1016/j.ceramint.2019.07.162.
- Ilinykh A. V., Wil’deman V. E. Modeling of structure and failure processes of granular composites, Computational Continuum Mechanics, 2012, vol. 5, no. 4, pp. 443–451 (In Russian). EDN: PLBSKT. DOI: https://doi.org/10.7242/1999-6691/2012.5.4.52.
- MohebbiM. S., Ploshikhin V. Implementation of nucleation in cellular automaton simulation of microstructural evolution during additive manufacturing of Al alloys, Additive Manufacturing, 2020, vol. 36, 101726. DOI: https://doi.org/10.1016/j.addma.2020.101726.
- Roy U., McDowell D. L., Zhou M. Effect of grain orientations on fracture behavior of polycrystalline metals, J. Mech. Phys. Solids, 2021, vol. 151, 104384. DOI: https://doi.org/10.1016/j.jmps.2021.104384.
- Kowalski N., Delannay L., Yan P., et al. Finite element modeling of periodic polycrystalline aggregates with intergranular cracks, Int. J. Solids Struct., 2016, vol. 90, pp. 60–68. DOI: https://doi.org/10.1016/j.ijsolstr.2016.04.010.
- Skripnyak N. V., Iokhim K. V. Effect of grain size distribution on the strength and strain properties of Zr-Nb alloys under tension at high strain rates, Tomsk State University Journal of Mathematics and Mechanics, 2020, no. 65, pp. 124–136 (In Russian). EDN: NDBIXH. DOI: https://doi.org/10.17223/19988621/65/10.
- Bachurin D. V. Influence of grain boundary misorientation on intergranular fracture of nanocrystalline palladium, Int. J. Fract., 2018, vol. 214, no. 1, pp. 69–78. EDN: QKWFSK. DOI: https://doi.org/10.1007/s10704-018-0319-2.
- Zhou G., Sun Q., Li D., et al. Meso-scale modeling and damage analysis of carbon/epoxy woven fabric composite under in-plane tension and compression loadings, Int. J. Mech. Sci., 2021, vol. 190, 105980. DOI: https://doi.org/10.1016/j.ijmecsci.2020.105980.
- Loendersloot R., Ehsani M., Sepehry N., Shamshirsaz M.Numerical modelling of stochastic fatigue damage accumulation in thick composites, In: European Workshop on Structural Health Monitoring. EWSHM 2020, Lecture Notes in Civil Engineering, 128; eds. P. Rizzo, A. Milazzo. Cham, Springer, 2021, pp. 776–787. DOI: https://doi.org/10.1007/978-3-030-64908-1_72.
- Yu H., Dahi Taleghani A., Lian Z. A new look at rock mechanical behavior from the mesoscale grain, J. Petrol. Sci. Eng., 2021, vol. 200, 108373. DOI: https://doi.org/10.1016/j.petrol.2021.108373.
- Zhu Q., Kondo D., Shao J., Pensee V. Micromechanical modelling of anisotropic damage in brittle rocks and application, Int. J. Rock Mech. Mining Sci., 2008, vol. 45, no. 4, pp. 467–477. DOI: https://doi.org/10.1016/j.ijrmms.2007.07.014.
- Liang K., Xie L., He B., et al. Effects of grain size distributions on the macro-mechanical behavior of rock salt using micro-based multiscale methods, Int. J. Rock Mech. Mining Sci., 2021, vol. 138, 104592. DOI: https://doi.org/10.1016/j.ijrmms.2020.104592.
- Kovalski E. R., Karpov G. N., Leisle A. V Geomechanic models of jointed rock mass, Int. J. Civil Eng. Technol., 2018, vol. 9, no. 13, pp. 440–448. EDN: PAZCJR.
- Silberschmidt V. V. Effect of material’s randomness on scaling of crack propagation in ceramics, Int. J. Fract., 2006, vol. 140, no. 1–4, pp. 73–85. DOI: https://doi.org/10.1007/s10704-005-3994-8.
- Silberschmidt V. V., Najar J. Computational modelling of the size effect of damage inhomogeneity in ceramics, Comput. Mater. Sci., 1998, vol. 13, no. 1–3, pp. 160–167. DOI: https://doi.org/10.1016/S0927-0256(98)00057-3.
- Radionova M. V., Vildeman V. E., Ilinykh A. V. Computer synthesis and statistical analysis of the distribution of structural characteristics of granular composite materials, Composites: Mechanics, Computations, Applications, 2011, vol. 2, no. 2, pp. 95–109. DOI: https://doi.org/10.1615/compmechcomputapplintj.v2.i2.20.
- Wil’deman V. E., Ilinykh A. V. Simulation of structural failure and scale effects of softening at the post-critical deformation stage in heterogeneous media, Phys. Mesomech., 2007, vol. 10, no. 4, pp. 23–29 (In Russian). EDN: IJIWGV.
- Wil’deman V. E., Sokolkin Yu. V., Tashkinov A. A. Mekhanika neuprugogo deformirovaniia i razrusheniia kompozitsionnykh materialov [Mechanics of Inelastic Deformation and Fracture of Composite Materials], ed. Yu. V. Sokolkin. Moscow, Nauka, 1997, 288 pp. (In Russian). EDN: SAQBEP.
- Mullakhmetov M. N., Ilinykh A. V. Numerical simualtion of the process of destruction of sequentially and parallel associated fibers, Master’s Journal, 2020, no. 1, pp. 9–26 (In Russian). EDN: KNQCWG.
Supplementary files
