Questions of the existence and uniqueness of the solution of one class of nonlinear integral equations on the whole line

Cover Page

Cite item

Full Text

Abstract

We consider a class of nonlinear integral equations with a stochastic and symmetric kernel on the whole line. With certain particular representations of the kernel and nonlinearity, equations of the mentioned type arise in many branches of mathematical natural science. In particular, such equations occur in the theory p-adic strings, in the kinetic theory of gases, in mathematical biology and in the theory of radiative transfer. Constructive existence theorems are proved for non-negative non-trivial and bounded solutions under various restrictions on the function describing the nonlinearity in the equation. Under additional restrictions on the kernel and on the nonlinearity, a uniqueness theorem is also proved in a certain class of bounded and non-negative functions that have a finite limit in ±. At the end, specific applied examples of the kernel and non-linearity are given that satisfy to all restrictions of the proven statements.

About the authors

Khachatur A. Khachatryan

Yerevan State University;
Lomonosov Moscow State University

Author for correspondence.
Email: khachatur.khachatryan@ysu.am
ORCID iD: 0000-0002-4835-943X
SPIN-code: 6783-9479
Scopus Author ID: 24461615400
http://www.mathnet.ru/person27540

D.Sc. (Phys. & Math. Sci.), Professor; Head of the Dept.; Dept. of Theory of Functions and Differential Equations1; Leading Member of the grant of the Russian Science Foundation (project no. 19–11–00223)3

1, A. Manukyan str., Yerevan, 0025, Armenia; 1, Leninskie Gory, Moscow, 119991, Russian Federation

Haykanush S. Petrosyan

Armenian National Agrarian University;
Lomonosov Moscow State University

Email: haykuhi25@mail.ru
ORCID iD: 0000-0002-7172-4730
Scopus Author ID: 57201727643
http://www.mathnet.ru/person85670

Cand. Phys. & Math. Sci., Associate Professor; Dept of Higher Mathematics and Physics2; Member of the grant of the Russian Science Foundation (project no. 19–11–00223)3

1, A. Manukyan str., Yerevan, 0025, Armenia; 1, Leninskie Gory, Moscow, 119991, Russian Federation

References

  1. Aref’eva I. Ya. Rolling tachyon on non-BPS branes and p-adic strings, Proc. Steklov Inst. Math., 2004, vol. 245, pp. 40–47.
  2. Vladimirov V. S., Volovich Ya. I. Nonlinear dynamics equation in p-adic string theory, Theoret. and Math. Phys., 2004, vol. 138, no. 3, pp. 297–309. DOI: https://doi.org/10.1023/B:TAMP.0000018447.02723.29.
  3. Kogan M. N. Rarefied Gas Dynamics. New York, Springer Science, 1969, xi+515 pp.
  4. Khachatryan A. K., Khachatryan K. A. Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave, Theoret. and Math. Phys., 2016, vol. 189, no. 2, pp. 1609–1623. EDN: XMNGQJ. DOI: https://doi.org/10.1134/S0040577916110064.
  5. Engibaryan N. B., Khachatryan A. Kh. Exact linearization of the sliding problem for a dilute gas in the Bhatnagar–Gross–Krook model, Theoret. and Math. Phys., 2000, vol. 125, no. 2, pp. 1589–1592. EDN: XKTKIJ. DOI: https://doi.org/10.1007/BF02551017.
  6. Engibaryan N. B. A nonlinear problem of radiative transfer, Astrophysics, 1966, vol. 2, no. 1, pp. 12–14. EDN: XMNFBB. DOI: https://doi.org/10.1007/BF01041941.
  7. Sobolev V. V. The Milne problem for an inhomogeneous atmosphere, Dokl. Akad. Nauk SSSR, 1978, vol. 239, no. 3, pp. 558–561 (In Russian).
  8. Arabadzhyan L. G. On an integral equation of transport theory in an inhomogeneous medium, Differ. Uravn., 1987, vol. 23, no. 9, pp. 1618–1622 (In Russian).
  9. Diekmann O. Thresholds and travelling waves for the geographical spread of infection, J. Math. Biology, 1978, vol. 6, no. 2, pp. 109–130. DOI: https://doi.org/10.1007/BF02450783.
  10. Diekmann O., Kaper H. G. On the bounded solutions of a nonlinear convolution equation, Nonlinear Analysis, Theory, Methods and Applications, 1978, vol. 2, no. 6, pp. 721–737. DOI: https://doi.org/10.1016/0362-546X(78)90015-9.
  11. Joukovskaya L. V. Iterative method for solving nonlinear integral equations describing rolling solutions in string theory, Theoret. and Math. Phys., 2006, vol. 146, no. 3, pp. 335–342. EDN: LKBTTT. DOI: https://doi.org/10.1007/s11232-006-0043-3.
  12. Vladimirov V. S. Solutions of p-adic string equations, Theoret. and Math. Phys., 2011, vol. 167, no. 2, pp. 539–546. EDN: OIBKZL. DOI: https://doi.org/10.1007/s11232-011-0040-z.
  13. Vladimirov V. S. The equation of the p-adic open string for the scalar tachyon field, Izv. Math., 2005, vol. 69, no. 3, pp. 487–512. EDN: LIWGVV. DOI: https://doi.org/10.1070/IM2005v069n03ABEH000536.
  14. Khachatryan Kh. A. On the solubility of certain classes of non-linear integral equations in p-adic string theory, Izv. Math., 2018, vol. 82, no. 2, pp. 407–427. EDN: YCIQJV. DOI: https://doi.org/10.1070/IM8580.
  15. Khachatryan Kh. A. Solvability of some nonlinear boundary value problems for singular integral equations of convolution type, Trans. Moscow Math. Soc., 2020, vol. 81, no. 1, pp. 1–31. EDN: TTYLNH. DOI: https://doi.org/10.1090/mosc/306.
  16. Khachatryan Kh. A. On the solvability of a boundary value problem in p-adic string theory, Trans. Moscow Math. Soc., 2018, pp. 101–115. EDN: DNYZMK. DOI: https://doi.org/10.1090/mosc/281.
  17. Arabadzhyan L. G. Solutions of certain integral equations of the Hammerstein type, J. Contemp. Math. Anal., 1997, vol. 32, no. 1, pp. 17–24.
  18. Khachatryan A. Kh., Khachatryan Kh. A. On solvability of one class of Hammerstein non-linear integral equations, Bul. Acad. Ştiințe Repub. Mold. Mat., 2010, no. 2, pp. 67–83.
  19. Khachatryan Kh. A. On a class of integral equations of Urysohn type with strong non-linearity, Izv. Math., 2012, vol. 76, no. 1, pp. 163–189. EDN: PGUBLV. DOI: https://doi.org/10.1070/IM2012v076n01ABEH002579.
  20. Khachatryan K. A., Petrosyan H. S. On the solvability of a class of nonlinear Hammerstein—Stieltjes integral equations on the whole line, Proc. Steklov Inst. Math., 2020, vol. 308, pp. 238–249. EDN: TXFHWH. DOI: https://doi.org/10.1134/S0081543820010198.
  21. Khachatryan Kh. A., Petrosyan H. S. One parameter families of positive solution of some classes of convolution type nonlinear integral equations, J. Math. Sci., 2018, vol. 231, no. 2, pp. 153–167. DOI: https://doi.org/10.1007/s10958-018-3812-2.
  22. Kolmogorov A. N., Fomin S. V. Elementy teorii funktsii i funktsional’nogo analiza [Elements of the Theory of Functions and Functional Analysis]. Moscow, Nauka, 1981, 542 pp. (In Russian)
  23. Khachatryan A. Kh., Khachatryan Kh. A., Petrosyan H. S. Asymptotic behavior of a solution for one class of nonlinear integro-differential equations in the income distribution problem, Trudy Inst. Mat. Mekh. UrO RAN, 2021, vol. 27, no. 1, pp. 188–206 (In Russian). EDN: GOJJTE. DOI: https://doi.org/10.21538/0134-4889-2021-27-1-188-206.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».