On the asymptotics of spectrum of an even-order differential operator with a delta-function potential

Cover Page

Cite item

Full Text

Abstract

We study a sequence of differential operators of high even order whose potentials converge to the Dirac delta-function. One of the types of separated boundary conditions is considered. At the points of potential discontinuity, it is necessary to study the conditions of gluing for the correct determination of the corresponding differential equations solutions. For large values of the spectral parameter, asymptotic solutions of differential equations are furnished by the Naimark method. The conditions of gluing are studied, the boundary conditions are investigated, the equation for the eigenvalues of the considered differential operator is derived. The method of successive approximations is used to find the asymptotics of spectrum of studied differential operators, the limit of which determines a spectrum of operator with a delta-function potential.

About the authors

Sergei I. Mitrokhin

Lomonosov Moscow State University, Research Computing Center

Author for correspondence.
Email: mitrokhin-sergey@yandex.ru
ORCID iD: 0000-0003-1896-0563
Scopus Author ID: 7004215463
http://www.mathnet.ru/person46310

Cand. Phys. & Math. Sci., Associate Professor; Senior Researcher; Research Computing Center

1, Leninskie Gory, Moscow, 119991, Russian Federation

References

  1. Il’in V. A. Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a differential operator, Math. Notes, 1977, vol. 22, no. 5, pp. 870–882. https://doi.org/10.1007/BF01098352.
  2. Il’in V. A. Necessary and sufficient conditions for being a Riesz basis of root vectors of second-order discontinuous operators, Differ. Uravn., 1986, vol. 22, no. 12, pp. 2059–2071 (In Russian).
  3. Mitrokhin S. I. Formulas for the regularized traces of the second order differential operators with discontinuous coefficients, Mosc. Univ. Math. Bull., 1986, vol. 41, no. 6, pp. 1–5.
  4. Mitrokhin S. I. Trace formulas for a boundary value problem with a functional-differential equation with a discontinuous coefficient, Differ. Uravn., 1986, vol. 22, no. 6, pp. 927–931 (In Russian).
  5. Mitrokhin S. I. On some spectral properties of second-order differential operators with a discontinuous positive weight function, Dokl. Akad. Nauk, 1997, vol. 356, no. 1, pp. 13–15 (In Russian).
  6. Vinokurov V. A., Sadovnichii V. A. Arbitrary-order asymptotics of the eigenvalues and eigenfunctions of the Sturm–Liouville boundary value problem on an interval with integrable potential, Differ. Equ., 1998, vol. 34, no. 10, pp. 1425–1429.
  7. Mitrokhin S. I. The asymptotics of the eigenvalues of a fourth order differential operator with summable coefficients, Mosc. Univ. Math. Bull., 2009, vol. 64, no. 3, pp. 102–104.
  8. Mitrokhin S. I. On spectral properties of a differential operator with summable coefficients with a retarded argument, Ufimsk. Mat. Zh., 2011, vol. 3, no. 4, pp. 95–115 (In Russian).
  9. Mitrokhin S. I. Spectral properties of boundary value problems for functional-differential equations with integrable coefficients, Differ. Equ., 2010, vol. 46, no. 8, pp. 1095–1103. https://doi.org/10.1134/S0012266110080033.
  10. Mitrokhin S. I. Asymptotics of the spectrum of a periodic boundary value problem for a differential operator with a summable potential, Trudy Inst. Mat. Mekh. UrO RAN, 2019, vol. 25, no. 1, pp. 136–149 (In Russian). https://doi.org/10.21538/0134-4889-2019-25-1-136-149.
  11. Savchuk A. M., Shkalikov A. A. Sturm–Liouville operators with singular potentials, Math. Notes, 1999, vol. 66, no. 6, pp. 741–753. https://doi.org/10.1007/BF02674332.
  12. Savchuk A. M. First-order regularised trace of the Sturm-Liouville operator with δ-potential, Russian Math. Surveys, 2000, vol. 55, no. 6, pp. 1168–1169. https://doi.org/10.1070/rm2000v055n06ABEH000352.
  13. Vinokurov V. A., Sadovnichii V. A. The asymptotics of eigenvalues and eigenfunctions and a trace formula for a potential with delta functions, Differ. Equ., 2002, vol. 38, no. 6, pp. 772–789. https://doi.org/10.1023/A:1020302110566.
  14. Borisov D. I. Gaps in the spectrum of the Laplacian in a strip with periodic delta interaction, Proc. Steklov Inst. Math. (Suppl.), 2019, vol. 305 (suppl. 1), pp. S16–S23. https://doi.org/10.1134/S0081543819040047.
  15. Konechnaya N. N., Safonova T. A., Tagirova R. N. Asymptotics of the eigenvalues and regularized trace of the first-order Sturm–Liouville operator with δ-potential, Vestnik of Northern (Arctic) Federal University. Ser. Natural Science, 2016, no. 1, pp. 104–113 (In Russian). https://doi.org/10.17238/issn2227-6572.2016.1.104.
  16. Kochubei A. N. Elliptic operators with boundary conditions on a subset of measure zero, Funct. Anal. Appl., 1982, vol. 16, no. 2, pp. 137–139. https://doi.org/10.1007/BF01081632.
  17. Berezin F. A., Faddeev L. D. A remark on Schrödinger’s equation with a singular potential, Sov. Math., Dokl., 1961, vol. 2, no. 5, pp. 372–375.
  18. Geiler V. A., Margulis V. A., Chuchaev I. I. Potentials of zero radius and Carleman operators, Siberian Math. J., 1995, vol. 36, no. 4, pp. 714–726. https://doi.org/10.1007/BF02107328.
  19. Naimark M. A. Lineinye differentsial’nye operatory [Linear Differential Operators]. Moscow, Nauka, 1969, 528 pp. (In Russian)
  20. Mitrokhin S. I. Asymptotics of eigenvalues of differential operator with alternating weight function, Russian Math. (Iz. VUZ), 2018, vol. 62, no. 6, pp. 27–42. https://doi.org/10.3103/S1066369X1806004X.
  21. Bellman R., Cooke K. L. Differential-Difference Equations, Mathematics in Science and Engineering, vol. 6. New York, London, Academic Press, 1963, xvi+462 pp.
  22. Sadovnichii V. A., Lyubishkin V. A. Some new results of the theory of regularized traces of differential operators, Differ. Uravn., 1982, vol. 18, no. 1, pp. 109–116 (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».