On numerical study of periodic solutions of a delay equation in biological models


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Some results are presented of the numerical study of periodic solutions of a nonlinear equation with a delayed argument in connection with themathematical models having real biological prototypes. The problem is formulated as a boundary value problem for a delay equation with the conditions of periodicity and transversality. A spline-collocation finite-difference scheme of the boundary value problem using a Hermitian interpolation cubic spline of the class C1 with fourth order error is proposed. For the numerical study of the system of nonlinear equations of the finitedifference scheme, the parameter continuation method is used, which allows us to identify possible nonuniqueness of the solution of the boundary value problem and, hence, the nonuniqueness of periodic solutions regardless of their stability. By examples it is shown that the periodic oscillations occur for the parameter values specific to the real molecular-genetic systems of higher species, for which the principle of delay is quite easy to implement.

作者简介

S. Fadeev

Sobolev Institute of Mathematics; Novosibirsk State University

编辑信件的主要联系方式.
Email: fadeev@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

V. Kogai

Sobolev Institute of Mathematics; Novosibirsk State University

Email: fadeev@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

T. Khlebodarova

Institute of Cytology and Genetics

Email: fadeev@math.nsc.ru
俄罗斯联邦, pr. Akad. Lavrent’eva 10, Novosibirsk, 630090

V. Likhoshvai

Institute of Cytology and Genetics; Novosibirsk State University

Email: fadeev@math.nsc.ru
俄罗斯联邦, pr. Akad. Lavrent’eva 10, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016