Analysis of Medium-Term Forecasting Methods for Processes with Structural Shifts in Financial and Commodity Markets
- Авторлар: Avdeeva Z.K1, Grebenyuk E.A1, Kovriga S.V1
-
Мекемелер:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Шығарылым: № 5 (2024)
- Беттер: 3-24
- Бөлім: Surveys
- URL: https://bakhtiniada.ru/1819-3161/article/view/286793
- ID: 286793
Дәйексөз келтіру
Толық мәтін
Аннотация
Негізгі сөздер
Авторлар туралы
Z. Avdeeva
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: avdeeva@ipu.ru
Moscow, Russia
E. Grebenyuk
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: lngrebenuk12@yandex.ru
Moscow, Russia
S. Kovriga
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: kovriga@ipu.ru
Moscow, Russia
Әдебиет тізімі
- Мировая экономика и международный бизнес / под общ. ред. В.В. Полякова и Р.К. Щенина. – 5-е изд., стер. – М.: КНОРУС, 2008. – 688 с.
- Международная практика прогнозирования мировых цен на финансовых рынках (сырье, акции, курсы валют). Под ред. Я. Миркина – М: Магистр, 2014. – 456 с.
- Graefe, A., Weinhardt, C. Long-Term Forecasting with Prediction Markets – A Field Experiment on Applicability and Expert Confidence // The Journal of Prediction Markets. – 2008. – Vol. 2, no. 2. – P. 71–91.
- Jiang, M., Wang, K., Sun, Y., et al. MLGN: Multi-scale Local-Global Feature Learning Network for Long-Term Series Forecasting // Machine Learning: Science and Technology. – 2023. – Vol. 4, no. 4. – DOI: https://doi.org/10.1088/2632-2153/ad1436
- Zellner, M., Abbas, A.E., Budescu, D.V., Galstyan, A. A Survey of Human Judgement and Quantitative Forecasting Methods // R. Soc. Open Sci. – 2021. – Vol. 8. – Art. no. 201187. – DOI: https://doi.org/10.1098/rsos.201187
- Mediavilla, M. A., Dietrich, F., Palm, D. Review and Analysis of Artificial Intelligence Methods for Demand Forecasting in Supply Chain Management // Procedia CIRP. – 2022. – Vol. 107. – P. 1126–1131.
- Kumar, G., Jain, S., Singh, U.P. Stock Market Forecasting Using Computational Intelligence: A Survey // Archives of Computational Methods in Engineering. – 2021. – Vol. 28, no. 3. – P. 1069–1101.
- Zheng, H., Wu, J., Song, R., et al. Predicting Financial Enterprise Stocks and Economic Data Trends Using Machine Learning Time Series Analysis. Applied and Computational Engineering. – 2024. – Vol. 87. – P. 26–32.
- Fattouh, B., Mahadeva, L. Causes and Implications of Shifts in Financial Participation in Commodity Markets // Journal of Futures Markets. – 2014. – Vol. 34, no. 8. – P. 757–787.
- Fan, Y., Xu, J.H. What Has Driven Oil Prices since 2000? A Structural Change Perspective // Energy Economics. – 2011. – Vol. 33, no. 6. – P. 1082–1094.
- Покровская А.В. Анализ структурных сдвигов на рынке ценных бумаг России в период 2019–2022 гг. // Вестник Томского государственного университета. Экономика. – 2023. – № 63. – С. 118–134.
- Hunjra, A.I., Azam, M., Niazi, G.S.K., et al. Risk and Return Relationship in Stock Market and Commodity Prices: A Comprehensive Study of Pakistani Markets // World Applied Sciences Journal. – 2011. – Vol. 13, no. 3. – P. 470–481.
- Mensi, W., Beljid, M., Boubaker, A., Managi, S. Correlations and Volatility Spillovers across Commodity and Stock Markets: Linking Energies, Food, and Gold // Economic Modelling. – 2013. – Vol. 32. – P. 15–22.
- Öztek, M.F., Öcal, N. Financial Crises and the Nature of Correlation between Commodity and Stock Markets // International Review of Economics & Finance. – 2017. – Vol. 48. – P. 56–68.
- Kosko, B. Fuzzy Cognitive Maps // Int. J. Man. Mach. Stud. – 1986. – Vol. 24, no. 1. – P. 65–75.
- Авдеева З.К., Коврига С.В. Диагностирование проблемных ситуаций в развитии сложных систем на основе когнитивных карт // Управление большими системами. – 2013. – Вып. 42. – С. 5–28.
- Авдеева З.К., Коврига С.В. Подход к постановке задач управления на когнитивной модели ситуации для стратегического мониторинга // Управление большими системами. – 2016. – Вып. 59. – С. 120–146.
- Stock, J.H., Watson, M.W. Evidence on Structural Instability in Macroeconomic Time Series Relations // Journal of Business & Economic Statistics. – 1996. – Vol. 14, no. 1. – P. 11–30.
- Lazariv, T., Schmid, W. Challenges in Monitoring Non-stationary Time Series. In: Frontiers in Statistical Quality Control. Ed. by S. Knoth, S., W. Schmid. – Cham: Springer, 2018. – DOI: https://doi.org/10.1007/978-3-319-75295-2_14
- Гребенюк Е.А. Алгоритмы обнаружения изменений свойств нестационарных процессов в режиме мониторинга // Труды XIV Международной конференции «Управление развитием крупномасштабных систем» (MLSD-2021). – Москва, 2021. – С. 738–746.
- Mandelbrot, B.B. Fractals and Scaling in Finance. – New York: Springer, 1997. – 552 p.
- Peters, E.E. Fractal Market Analysis. Applying Chaos Theory to Investment & Economics. – New York: J. Wiley & Sons, 1994. – 336 p.
- Perron, P. The Great Crash, the Oil Price Shock and the Unit Root Hypothesis // Econometrica. – 1989. – Vol. 57, no. 6. – P. 1361–1401.
- Kwiatkowski, D., Phillips, P., Schmidt, P. Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root? // Journal of Econometrics. – 1992. – Vol. 54, no. 1-3. – P. 159–178.
- Скроботов А.А. Структурные сдвиги и тестирование на единичный корень // Прикладная эконометрика. – 2020. – T. 58. – С. 96–141.
- Casini, A., Perron, P. Structural Breaks in Time Series // Oxford Research Encyclopedia of Economics and Finance. – 2019. – DOI: https://doi.org/10.1093/acrefore/9780190625979.013.179
- Бродский Б.Е. Структурные сдвиги и единичные корни: различение моделей нестационарности временных рядов // Прикладная эконометрика. – 2008. – №. 3. – С. 52–63.
- Полбин А.В., Скроботов А.А. Тестирование наличия изломов в тренде структурной компоненты ВВП Российской Федерации // Экономический журнал Высшей школы экономики. – 2016. – Т. 20, № 4. – С. 588–623.
- Engle, R.F., Granger, C.W.J. Co-Integration and Error-Correction: Representation, Estimation, and Testing // Econometrica. – Vol. 55. – P. 251–276.
- Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. – Oxford: Oxford University Press, 1995. – 267 p.
- Скроботов А.А. Структурные сдвиги в моделях коинтеграции // Прикладная эконометрика. – 2021. – № 3. – С. 117–141.
- Bontempi, G. Long Term Time Series Prediction with Multi-input Multi-output Local Learning // Proceedings of the 2nd European Symposium on Time Series Prediction (ESTSP08). – Helsinki, Finland, 2008. – P. 145–154.
- Bates, J.M., Granger, C.W.J. The Combination of Forecasts // Journal of the Operational Research Society. – 1969. – Vol. 20, no. 4. – P. 451–468.
- Armstrong, J.S. Combining Forecasts. In: Principles of Forecasting. A Handbook for Researchers and Practitioners. Ed. by J.S. Armstrong. – Boston: Kluwer Academic Publishers, 2001. – P. 417–440.
- Makridakis, S., Spiliotis, E., Assimakopoulos, V. The M4 Competition: Results, Findings, Conclusion and Way Forward // International Journal of Forecasting. – 2018. – Vol. 34, no. 4. – P. 802–808.
- Atiya, A.F. Why Does Forecast Combination Work So Well? // International Journal of Forecasting. – 2020. – Vol. 36, no. 1. – P. 197–200.
- Wang, X., Hyndman, R.J., Li, F., Kang, Y. Forecast Combinations: An over 50-Year Review // International Journal of Forecasting. – 2023. – Vol. 39, no. 4. – P. 1518–1547.
- Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T. Bayesian Model Averaging: A Tutorial // Statistical Science. – 1999. – Vol. 14, no. 4. – P. 382–417.
- Maheu, J.M., Gordon, S. Learning, Forecasting and Structural Breaks // Journal of Applied Econometrics. – 2008. – Vol. 23, no. 5. – P. 553–583.
- Pesaran, M.H., Pettenuzzo, D., Timmermann, A. Forecasting Time Series Subject to Multiple Structural Breaks // The Review of Economic Studies. – 2006. – Vol. 73, no. 4. – P. 1057–1084.
- Avdeeva, Z.K., Grebenyuk, Е.А., Kovriga, S.V. Raw Material Price Forecasting on Commodity Markets: Application of Expert and Quantitative Information // Advances in Systems Science and Applications. – 2022. – Vol. 22, no. 4. – P. 126–143.
- Giraitis, L., Kapetanios, G., Price, S. Adaptive Forecasting in the Presence of Recent and Ongoing Structural Change // Journal of Econometrics. – 2013. – Vol. 177, no. 2. – P. 153–170.
- Junttila, J. Structural Breaks, ARIMA Model and Finnish Inflation Forecasts // International Journal of Forecasting. – 2001. – Vol. 17, no. 2. – P. 203–230.
- Diebold, F.X., Pauly, P. Structural Change and the Combination of Forecasts // Journal of Forecasting. – 1987. – Vol. 6, no. 1. – P. 21–40.
- Goodwin, B.K. Forecasting Cattle Prices in the Presence of Structural Change // Journal of Agricultural and Applied Economics. – 1992. – Vol. 24, no. 2. – P. 11–22.
- Raftery, A.E., Kárný, M., Ettler, P. Online Prediction under Model Uncertainty via Dynamic Model Averaging: Application to a Cold Rolling Mill // Technometrics. – 2010. – Vol. 52, no. 1. – P. 52–66.
- Byrne, J.P., Korobilis, D., Ribeiro, P.J. On the Sources of Uncertainty in Exchange Rate Predictability // International Economic Review. – 2018. – Vol. 59, no. 1. – P. 329–357.
- Aye, G., Gupta, R., Hammoudeh, S., Kim, W.J. Forecasting the Price of Gold Using Dynamic Model Averaging // International Review of Financial Analysis. – 2015. – Vol. 41. – P. 257–266.
- Koop, G., Korobilis, D. Large Time-Varying Parameter VARs // Journal of Econometrics. – 2013. – Vol. 177, no. 2. – P. 185–198.
- Taieb, S.B., Hyndman, R. Recursive and Direct Multi-step Forecasting: The Best of Both Worlds. Working Paper 19/12. – Melbourne: Monash University, Department of Econometrics and Business Statistics, 2012. – 36 p.
- Taieb, S.B., Sorjamaa, A., Bontempi, G. Multiple-Output Modeling for Multi-step-ahead Time Series Forecasting // Neurocomputing. – 2010. – Vol. 73. – P. 1950–1957.
- Livieris, I.E., Pintelas, P. A Novel Multi-step Forecasting Strategy for Enhancing Deep Learning Models’ Performance // Neural Computing and Applications. – 2022. – Vol. 34. – P. 19453–19470. – DOI: https://doi.org/10.1007/s00521-022-07158-9
- Sezer, O.B., Gudelek, M.U., Ozbayoglu, A.M. Financial Time Series Forecasting with Deep Learning: A Systematic Literature Review: 2005–2019 // Applied Soft Computing. – 2020. – Art. no. 106181. – DOI: https://doi.org/10.1016/j.asoc.2020.106181
- Mahmoud, A., Mohammed, A. A Survey on Deep Learning for Time-Series Forecasting. In: Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges. Ed. by A.E. Hassanien and A. Darwish. – Cham: Springer, 2021. – P. 365–392.
- Li, Z., Fan, C., Ding, W., Qian, K. Robot Navigation and Map Construction Based on SLAM Technology // World Journal of Innovation and Modern Technology. – 2024. – Vol. 7, iss. 3. – P. 8–14. – DOI: https://doi.org/10.53469/wjimt.2024.07(03).02
- Dessaint, O., Foucault, T., Frésard, L. Does Alternative Data Improve Financial Forecasting? The Horizon Effect // The Journal of Finance. – 2024. – Vol. 79, no. 3. – P. 2237–2287.
- Lee, S.I., Yoo, S.J. Threshold-Based Portfolio: The Role of the Threshold and Its Applications // The Journal of Supercomputing. – 2020. – Vol. 76, no. 10. – P. 8040–8057.
- Dingli, A., Fournier, K.S. Financial Time Series Forecasting – Deep Learning Approach // International Journal of Machine Learning and Computing. – 2017. – Vol. 7, no. 5. – P. 118–122.
- Luo, Z., Guo, W., Liu, Q., Zhang, Z. A Hybrid Model for Financial Time‐Series Forecasting Based on Mixed Methodologies // Expert Systems. – 2021. – Vol. 38, no. 2. – Art. no. e12633.
- Zhang, G., Zhang, X., Feng, H. Forecasting Financial Time Series Using a Methodology Based on Autoregressive Integrated Moving Average and Taylor Expansion // Expert Systems. – 2016. – Vol. 33, no. 5. – P. 501–516.
- Wu, Z., Huang, N.E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method // Adv. Adapt. Data Anal. – 2009. – Vol. 1, no. 01. – P. 1–41. – DOI: https://doi.org/10.1142/S1793536909000047
- Yang, H., Lin, H. Applying the Hybrid Model of EMD, PSR, and ELM to Exchange Rates Forecasting // Computational Economics. – 2017. – Vol. 49, no. 1. – P. 99–116.
- García, D., Kristjanpoller, W. An Adaptive Forecasting Approach for Copper Price Volatility through Hybrid and Non-hybrid Models // Applied Soft Computing. – 2019. – Vol. 74. – P. 466–478.
- Peng, C.K., Havelin, S., Stanley, H.E., Goldberger, A.L. Quantification of Scaling Exponents and Crossover Phenomena in Nonstationary Time Series // Chaos. – 1995. – No. 5. – P. 82–89.
- Mali, P., Mukhopadhyay, A. Multifractal Characterization of Gold Market: A Multifractal Detrended Fluctuation Analysis // Physica: A Statistical Mechanics and its Applications. – 2014. – Vol. 413. – P. 361–372.
- Podobnik, B., Stanley, H.E. Detrended Cross-correlation Analysis: A New Method for Analyzing Two Non-stationary Time Series // Phys. Rev. Lett. – 2008. – Vol. 100. – Art. no. 084102.
- Granger, C.W.J., Joyeux, R. An Introduction to Long‑Memory Time Series Models and Fractional Differencing // Journal of Time Series Analysis. – 1980. – Vol. 1, no. 1. – P. 15–30.
- Jiang, Z.Q., Xiea, W.J., Zhoua, W.X., Sornette, D. Multifractal Analysis of Financial Markets: A Review // Reports on Progress in Physics. – 2019. – Vol. 82, no. 12. – Art. no. 125901.
- Гарафутдинов Р.В. Исследование влияния некоторых параметров модели ARFIMA на точность прогноза финансовых временных рядов // Прикладная эконометрика. – 2021. – Т. 62. – С. 85–100.
- Ellis, C., Wilson, P. Another Look at the Forecast Performance of ARFIMA Models // International Review of Financial Analysis. – 2004. – Vol. 13, no. 1. – P. 63–81.
- Xiu, J., Jin, Y. Empirical Study of ARFIMA Model Based on Fractional Differencing // Physica: A Statistical Mechanics and its Applications. – 2007. – Vol. 377, no. 1. – P. 138–154.
- Shittu, O.I., Yaya, O.S. Measuring Forecast Performance of ARMA and ARFIMA Models: An Application to US Dollar/UK Pound Foreign Exchange Rate // European Journal of Scientific Research. – 2009. – Vol. 32, no. 2. – P. 167–176.
- Jadhav, V., Chinnappa, R.B.V., Gaddi, G.M. Application of ARIMA Model for Forecasting Agricultural Prices // J. Agr. Sci. Tech. – 2017. – Vol. 19, no. 5. – P. 981–992.
- Boutahar, M., Mootamri, I., Peguin-Feissolle, A. A Fractional Integrated Exponential STAR Model Applied to the US Real Effective Exchange Rates // Economic Modelling. – 2009. – Vol. 26. – P. 335–341.
- Papailias, F., Dias, G.F. Forecasting Long Memory Series Subject to Structural Change: A Two-Stage Approach // International Journal of Forecasting. – 2015. – Vol. 31, no. 4. – P. 1056–1066.
- Bukhari, A.H., Raja, M.A.Z., Sulaiman, M., et al. Fractional Neuro-Sequential ARFIMA-LSTM for Financial Market Forecasting // IEEE Access. – 2020. – Vol. 8. – P. 71326–71338.
- Kristoufek, L. Fractal Markets Hypothesis and the Global Financial Crisis: Scaling, Investment Horizons and Liquidity // Advances in Complex Systems. – 2012. – Vol. 15, no. 6. – Art. no. 1250065.
- Taylor, S.J., Letham, B. Forecasting at Scale // The American Statistician. – 2018. – Vol. 72, no. 1. – P. 37–45.
- Baumeister, C., Kilian, L. Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach, Journal of Business & Economic Statistics. – 2015. – Vol. 33, no. 3. – P. 338–351.
- Li, X., Ma, J., Wang, S., Zhang, X. How Does Google Search Affect Trader Positions and Crude Oil Prices? // Economic Modelling. – 2015. – Vol. 49. – P. 162–171.
- Tang, L., Zhang, C., Li, L., Wang, S. A Multi-scale Method for Forecasting Oil Price with Multi-factor Search Engine Data // Applied Energy. – 2020. – Vol. 257. – Art. no. 114033.
- Xu, W., Liu, W., Xu, C., et al. REST: Relational Event-Driven Stock Trend Forecasting // Proceedings of the Web Conference WWW’2021. – New York, 2021. – P. 1–10. – DOI: https://doi.org/10.1145/3442381.3450032
- Zhang, X., Yu, L., Wang, S., Lai, K.K. Estimating the Impact of Extreme Events on Crude Oil Price: An EMD-Based Event Analysis Method // Energy Economics. – 2009. – Vol. 31, no. 5. – P. 768–778.
- Zhao, L., Liu, W., Zhou, M., Wen, F. Extreme Event Shocks and Dynamic Volatility Interactions: The Stock, Commodity, and Carbon Markets in China // Finance Research Letters. – 2022. – Vol. 47. – Art. no. 102645.
- Marmier, F., Cheikhrouhou, N. Structuring and Integrating Human Knowledge in Demand Forecasting: A Judgmental Adjustment Approach // Production Planning & Control. – 2010. – Vol. 21, no. 4. – P. 399–412.
- Felix, G., Nápole, G., Falcon, R., Froelich, W. A Review on Methods and Software for Fuzzy Cognitive Maps // Artif. Intell. Rev. – 2019. – Vol. 52. – P. 1707–1737.
- Orang, O., de Lima e Silva, P.C., Guimarães, F.G. Time Series Forecasting Using Fuzzy Cognitive Maps: A Survey // Artif. Intell. Rev. – 2023. – Vol. 56. – P. 7733–7794.
- Hong, T., Han, I. Integrated Approach of Cognitive Maps and Neural Networks Using Qualitative Information on the World Wide Web: The KBNMiner // Expert Systems. – 2004. – Vol. 21, no. 5. – P. 243–252.
- Аверкин А.Н., Ярушев С.А., Павлов В.Ю. Когнитивные гибридные системы поддержки принятия решений и прогнозирования // Программные продукты и системы. – 2017. – T. 30, № 4. – С. 632–642.
- Авдеева З.К., Гребенюк Е.А., Коврига С.В. Формирование среднесрочных помесячных прогнозов цен на сырье на основе экспертной и количественной информации // Автоматизация в промышленности. – 2022. – № 5. – С. 38–45.
- Avdeeva, Z.K., Grebenyuk, E.A., Kovriga, S.V. Detection of Structural Shifts in Commodity Markets in the Mode of Situation and Digital Monitoring // IFAC-PapersOnLine. – 2023. – Vol. 56, no. 2. – P. 7778–7783.
Қосымша файлдар
