Creating Feature Spaces and Autoregressive Models to Forecast Railway Track Deviations
- Authors: Vladova A.Y.1,2
-
Affiliations:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Financial University under the Government of the Russian Federation
- Issue: No 2 (2023)
- Pages: 54-64
- Section: Control of Technical Systems and Industrial Processes
- URL: https://bakhtiniada.ru/1819-3161/article/view/291585
- DOI: https://doi.org/10.25728/pu.2023.2.5
- ID: 291585
Cite item
Full Text
Abstract
About the authors
A. Yu Vladova
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences; Financial University under the Government of the Russian Federation
Email: avladova@ipu.ru
Moscow, Russia
References
- Kostrzewski, M., Melnik, R. Condition Monitoring of Rail Transport Systems: A Bibliometric Performance Analysis and Systematic Literature Review // Sensors. – 2021. – Vol. 21, no. 14. – Art. no. 4710.
- Tsunashima, H. Condition Monitoring of Railway Tracks from Car-Body Vibration Using a Machine Learning Technique // Applied Sciences. – 2019. – Vol. 9. – Art. no. 2734.
- Liu, X., Markine, V.L. Train Hunting Related Fast Degradation of a Railway Crossing-Condition Monitoring and Numerical Verification // Sensors. – 2020. – Vol. 20, no. 8. – Art. no. 2278.
- Vladova, A.Yu. Identification of the Railway Track Technical State // 2021 14th International Conference Management of large-scale system development (MLSD). – Moscow: IEEE, 2021. – P. 1–5.
- Дубицкий И.С., Енин А.В., Владова А.Ю. Анализ динамики износа железнодорожных путей // Материалы 14-й междунар. конф. «Управление развитием крупномасштабных систем» (MLSD’2021). – Москва, 2021. – C. 979–985. [Dubitskii I.S., Enin A.V., Vladova A.Yu. Analiz dinamiki iznosa zheleznodorozhnykh putei // Materialy 14-i mezhdu-nar. konf. «Upravlenie razvitiem krupnomasshtabnykh sistem» (MLSD’2021). – Moskva, 2021. – C. 979–985. (In Russian)]
- Лукашин Ю.П. Адаптивные методы краткосрочного прогнозирования временных рядов. – М: Финансы и статистика (ФС), 2003. [Lukashin, Yu.P. Adaptivnye metody kratkosrochnogo prognozirovaniya vremennyh ryadov. – M: Finansy i statistika (FS), 2003. (In Russian)]
- Владова А.Ю. Гармонический анализ температур мерзлого грунта полосы отведения линейного объекта // Безопасность труда в промышленности. – 2017. – № 7. – С. 25–30. [Vladova, A.Yu. Garmonicheskij analiz temperatur merzlogo grunta polosy otvedeniya linejnogo ob'ekta // Bezopasnost' truda v promyshlennosti. – 2017. – No. 7. – P. 25–30. (In Russian)]
- Vladova, A.Yu. Remote Geotechnical Monitoring of a Buried Oil Pipeline // Mathematics. – 2022. – Vol. 10, no. 11. – Art. no.. 1813.
- Любушин А.А. Анализ данных систем геофизического и экологического мониторинга. – М.: Наука, 2007. [Lyubushin, A.A. Analiz dannyh sistem geofizicheskogo i ekologicheskogo monitoringa. – M.: Nauka, 2007. (In Russian)]
- Валеев С.Г. Регрессионное моделирование при обработке данных. – Казань: Изд-во ФЭН Академии наук Республики Татарстан, 2001. [Valeev, S.G. Regressionnoe modelirovanie pri obrabotke dannyh. – Kazan’: Izd-vo FEN Akademii nauk Respubliki Tatarstan, 2001. (In Russian)]
- Herzen, J., Lässig, F., Piazetta, S.G., et al. Darts: User-Friendly Modern Machine Learning for Time Series // Journal of Machine Learning Research. – 2022. – Vol. 23. – P. 1–6.
- Hosseini, R., Yang, K., Chen, A., Patra, S. A flexible forecasting model for production systems // ArXiv: 2105.01098v1. – 2021. – DOI: https://doi.org/10.48550/arXiv.2105.01098.
- Taylor, S., Letham, B. Forecasting at scale // The American Statistician. – 2018. – Vol. 72, no. 1. – P. 37-45.
- Vandeput, N. Forecast KPI: RMSE, MAE, MAPE & Bias Towards Data Science. – URL: https://towardsdatascience.com/forecast-kpi-rmse-mae-mape-bias-cdc5703d242d (Дата обращения 04.02.2023) [Accessed February 4, 2023].
- Hartomo, K., Nataliani, Y. A new model for learning-based forecasting procedure by combining k-means clustering and time series forecasting algorithms // PeerJ Computer Science. – 2021. – Vol. 7, no. 2. – Art. no. e534. – DOI: https://doi.org/7717/peerj-cs.534.
- Vivas E., Allende-Cid H., Salas R. A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score // Entropy. – 2020. – Vol. 22, no. 12. – Art. no. 1412.
Supplementary files
