Optimization approach to solving pnp problem based on parameterization by rodrigues vector
- 作者: Abramenkov A.N.1
-
隶属关系:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- 期: 编号 117 (2025)
- 页面: 200-219
- 栏目: Information technologies in control
- URL: https://bakhtiniada.ru/1819-2440/article/view/360564
- DOI: https://doi.org/10.25728/ubs.2025.117.10
- ID: 360564
如何引用文章
全文:
详细
作者简介
Alexander Abramenkov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: aabramenkov@asmon.ru
Moscow
参考
1. БЕКЛЕМИШЕВ Н.Д. Прямое нахождение оценки поло-жения камеры центральной проекции по четырем опор-ным точкам // Математическое моделирование. – 2020. – Т. 32, №10. – С. 91–104.2. КУДИНОВ И.А., ПАВЛОВ О.В., ХОЛОПОВ И.С. Реали-зация алгоритма определения пространственных коор-динат и угловой ориентации объекта по реперным точ-кам, использующего информацию от одной камеры // Компьютерная оптика. – 2015. – Т. 39, №3. – С. 413–419.3. ХОЛОПОВ И.С., КАЛИНКИН А.И. Оценка погрешности определения угловых координат объекта с двумя репер-ными излучателями // Вестник Рязанского государствен-ного радиотехнического университета. – 2019. – №69. – С. 52–59.4. APARICIO-ESTEVE E., URENA J., HERNANDEZ A. et al. Using Perspective-n-Point Algorithms for a Local Position-ing System Based on LEDs and a QADA Receiver // Sensors. – 2021. – Vol. 21, No. 19. – 6537.5. CUI J., MIN C., FENG D. Research on pose estimation for stereo vision measurement system by an improved method: uncertainty weighted stereopsis pose solution method based on projection vector // Optics Express. – 2020. – Vol. 28, No. 4. – P. 5470–5491.6. DAI J.S. Euler–Rodrigues formula variations, quaternion conjugation and intrinsic connections // Mechanism and Machine Theory. – 2015. – Vol. 92. – P. 144–152.7. FISCHLER M.A., BOLLES R.C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography // Communications of the ACM. – 1981. – Vol. 24, No. 6. – P. 381–395.8. FLETCHER R. Practical Methods of Optimization. – Wiley, 2000. – 436 p.9. GAO X.S., HOU X.R., TANG J. et al. Complete solution classification for the perspective-three-point problem // IEEE Trans. on Pattern Analysis and Machine Intelligence. – 2003. – Vol. 25, No. 8. – P. 930–943.10. HARTLEY R., ZISSERMAN A. Multiple View Geometry in Computer Vision. – New York: Cambridge University Press, 2003.11. HESCH J.A., ROUMELIOTIS S.I. A Direct Least-Squares (DLS) method for PnP // 2011 Int. Conf. on Computer Vi-sion. – 2011.12. Implementation of the BFGS algorithm in C++ [Электрон-ный ресурс]. – URL: https://github.com/IOdissey/bfgs (дата обращения: 27.03.2025).13. KAWECKI A., DĄBROWSKI P., JANUSZKO S. et al. AR Tags Based Absolute Positioning System // 8th Int. Conf. on Automation, Robotics and Applications (ICARA). – 2022. – P. 62–67.14. LEPETIT V., MORENO-NOGUER F., FUA P. EPnP: An Ac-curate O(n) Solution to the PnP Problem // Int. Journal of Computer Vision. – 2008. – Vol. 81. – P. 155–166.15. LV H., WU Q. An Energy-Efficient Field-Programmable Gate Array (FPGA) Implementation of a Real-Time Perspec-tive-n-Point Solver // Electronics. – 2024. – Vol. 13, No. 19. – 3815.16. Map-based navigation with ArUco markers [Электронный ресурс]. – URL: https://clover.coex.tech/en/aruco_map.html (дата обращения: 24.03.2025).17. NOCEDAL J., WRIGHT S.J. Numerical Optimization. – New York: Springer New York, 2006. – 664 p.18. OpenCV – Open Computer Vision Library [Электронный ресурс]. – URL: https://opencv.org/ (дата обращения 12.08.2025).19. QIAO R., XU G., WANG P. et al. An Accurate, Efficient, and Stable Perspective-n-Point Algorithm in 3D Space // Applied Sciences. – 2023. – Vol. 13, No. 2. – 1111.20. SCARAMUZZA D., FRAUNDORFER F. Visual Odometry [Tutorial] // IEEE Robotics & Automation Magazine. – 2011. – Vol. 18, No. 4. – P. 80–92.21. SUN Q., ZHANG T., ZHANG G. et al. Efficient Solution to PnP Problem Based on Vision Geometry // IEEE Robotics and Automation Letters. – 2024. – Vol. 9. No. 4. – P. 3100–3107.22. TERZAKIS G., LOURAKIS M. A Consistently Fast and Globally Optimal Solution to the Perspective-n-Point Prob-lem // European Conf. on Computer Vision. – 2020. – P. 478–494.23. VAKHITOV A., FERRAZ L., AGUDO Aet al. Uncertainty-aware camera pose estimation from points and lines // Proc. of IEEE/CVF Conf. on Computer Vision and Pattern Recog-nition (CVPR). – 2021. – P. 4659–4668.24. ZENG G., CHEN S., MU B. et al. CPnP: Consistent Pose Estimator for Perspective-n-Point Problem with Bias Elimi-nation // IEEE Int. Conf. on Robotics and Automation (ICRA). – 2023. – P. 1940–1946.25. ZHAN T., XU C., ZHANG C. et al. Generalized Maximum Likelihood Estimation for Perspective-n-Point Problem // IEEE Robotics and Automation Letters. – 2025. – Vol. 10, No. 2. – P. 1752–1759.26. ZHUANG S., ZHAO Z., CAO L. et al. A Robust and Fast Method to the Perspective-n-Point Problem for Camera Pose Estimation // IEEE Sensors Journal. – 2023. – Vol. 23, No. 11. – P. 11892–11906.
补充文件


