Design of experiment for sensitivity analysis of mathematical models from different classes
- Autores: Sysoev A.S.1, Saraev P.V.1, Pogodaev A.K.1
-
Afiliações:
- Lipetsk State Technical University
- Edição: Nº 117 (2025)
- Páginas: 103-118
- Seção: Systems analysis
- URL: https://bakhtiniada.ru/1819-2440/article/view/360559
- DOI: https://doi.org/10.25728/ubs.2025.117.5
- ID: 360559
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
Anton Sysoev
Lipetsk State Technical University
Email: ysoev_as@stu.lipetsk.ru
Lipetsk
Pavel Saraev
Lipetsk State Technical University
Email: psaraev@yandex.ru
Lipetsk
Anatoly Pogodaev
Lipetsk State Technical University
Email: pak@stu.lipetsk.ru
Lipetsk
Bibliografia
1. АДЛЕР Ю.П., МАРКОВА Е.В., ГРАНОВСКИЙ Ю.В. Пла-нирование эксперимента при поиске оптимальных усло-вий. – М.: Наука, 1976. – 279 с. 2. СОБОЛЬ И.М., СТАТНИКОВ Р.Б. Выбор оптимальных па-раметров в задачах со многими критериями. – М.: Дрофа,2006. – 176 с. 3. ЩЕГЛЕВАТЫХ Р.В., СЫСОЕВ А.С. Исследование ней-росетевой модели обнаружения аномальных наблюдений вмассивах данных // Прикладная математика и вопросыуправления. – 2021. – №1. – C. 23–40. 4. HORIGUCHI A., PRATOLA M.T., SANTNER T.J. Assessingvariable activity for Bayesian regression trees // ReliabilityEngineering & System Safety. – 2021. – No. 207. – P. 107391. 5. PETELET M., IOOSS B., ASSERIN O. et al. Latin hypercubesampling with inequality constraints // AStA – Advances inStatistical Analysis. – 2010. – No. 94(4). – P. 325–339. 6. SALTELLI A. Global Sensitivity Analysis: the Primer. –Chichester: John Wiley & Sons, 2008. 7. SARAEV P., BLYUMIN S., GALKIN A. et al. Mathematicalremodeling concept in simulation of complicated variablestructure transportation systems // Transportation ResearchProcedia. – 2020. – No. 45. – P. 475-482. 8. SIN G., GERNAEY K.V. Improving the Morris methodfor sensitivity analysis by scaling the elementary effects //Computer aided chemical engineering. – 2009. – No. 26. –P. 925–930. 9. SOBOL I.M. Global sensitivity indices for nonlinearmathematical models and their Monte Carlo estimates //Mathematics and computers in simulation. – 2001. – No. 1–3. –P. 271–280. 10. SYSOEV A. Sensitivity analysis of mathematical models //Computation. – 2023. – No. 11(8). – P. 159. 11. SZPISJAK-GULYAS N., AL-TAYAWI A.N., HORVATH Z.H.et al. Methods for experimental design, central compositedesign and the Box–Behnken design, to optimise operationalparameters: A review // Acta Alimentaria. – 2023. – No. 52(4). –P. 521–537.
Arquivos suplementares


