Logistic models of the technology life cycle as a tool for assessing the efficiency of r&d expenditures for knowledge intensive companies

Cover Page

Cite item

Full Text

Abstract

The study of the life cycles of technologies, their quantifications and the definition of breakpoints is an urgent scientific task. The most well-founded theoretical construction of the technology life cycle dynamics study is the logistic curve. The basis is a comparison of the dynamic series of costs and effects. The paper deals with the calculation of logistics trends expressing the relationship between annual data of gross revenue (effects) and R&D expenditures for Yandex in 2009-2021 (costs). Based on the approximation carried out by methods of nonlinear regression analysis, the values of maximum integral efficiency and maximum differential (point) efficiency of R&D expenditures for each of the considered time intervals are calculated. The study of logistics trends and the presented tools and results allow us to reveal the periods of dominance of one or another technological (or organizational and managerial) paradigm in the life of a certain high-tech company based on a comparison of aggregate and/or instantaneous efficiency for different periods of the company's development. In addition, the proposed results are relevant for assessing the prospects of technological shifts in the development of a high-tech company, namely, determining the level of technological or cost upper limit, expressed by the upper horizontal asymptote of the corresponding logistics.

About the authors

Robert Mikhaylovich Nizhegorodtsev

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: bell44@rambler.ru
Moscow

Natalia Andreevna Roslyakova

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: na@roslyakova24.ru
Moscow

Nina Pavlovna Goridko

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: horidko@mail.ru
Moscow

References

  1. ГОРИДЬКО Н.П., НИЖЕГОРОДЦЕВ Р.М. Регрессионная оценка мультипликаторов совокупного спроса по агре-гатам // Анализ, моделирование, управление, развитие социально-экономических систем: Сб. науч. трудов XIV Всеросс. с междунар. уч-ем шк.-симп. АМУР-2020. – Симферополь, 2020. – С. 109–110.
  2. ДХАКАЛ Т., МИН К.С. Макроанализ и прогноз перспек-тив распространения электромобилей // Форсайт – 2021. – Т. 15, №1. – С. 67–73.
  3. ИЛЬИНА Е.А., САРАЕВ Л.А. Стохастические модели динамики максимальной и оптимальной прибыли произ-водственного предприятия, внедряющего технологиче-ские инновации // Вестник Самарского университета. Экономика и управление. – 2023. – Т. 14, №2. – С. 197–213.
  4. ИПАТОВА И.Б., ПЕРЕСЕЦКИЙ А.А. Техническая эф-фективность предприятий отрасли производства ре-зиновых и пластмассовых изделий // Прикладная эконо-метрика. – 2013. – Т. 32, №4. – С. 71–92.
  5. НИЖЕГОРОДЦЕВ Р.М. Экономика инноваций: Учебное пособие. – М.: РУСАЙНС, 2016. – 154 с.
  6. Яндекс: годовые финансовые отчеты / Смартлаб [Элек-тронный ресурс]. – Режим доступа: https://smart-lab.ru/q/YNDX/f/y/GAAP/.
  7. D’ANGELO A., BARONCELLI A. An Investigation Over Inbound Open Innovation in SMEs: Insights from an Italian Manufacturing Sample // Technology Analysis & Strategic Management. – 2020. – Vol. 32, No. 5. – P. 542–560.
  8. DOAN A.-T., KHAN A., HOLMES S., TRAN T. SMEs’ effi-ciency in a transitional economy: does innovation and pub-lic support schemes matter? // Journal of the Asia Pacific Economy. – 2023. – Vol. 28, No. 3. – P. 1029–1060.
  9. DOBRZANSKI P. The efficiency of spending on R&D in Lat-in America region // Applied Economics. – 2020. – Vol. 52, No. 46. – P. 5020–5034.
  10. FORÉS B., CAMISÓN C. Does Incremental and Radical In-novation Performance Depend on Different Types of Knowledge Accumulation Capabilities and Organizational Size? // Journal of Business Research. – 2016. – Vol. 69. – P. 831–848.
  11. Indicators / WorldBank. [Электронный ресурс]. – Режим доступа: https://data.worldbank.org/indicator/NY.GDP.DEFL. KD.ZG?end=2021&name_desc=true&start=2000&view=map&year=1961.
  12. KIM K., LEE J., LEE C. Which innovation type is better for production efficiency? A comparison between prod-uct/service, process, organisational and marketing innova-tions using stochastic frontier and meta-frontier analysis // Technology Analysis & Strategic Management. – 2023. – Vol. 35, No. 1. – P. 59–72.
  13. MIAMO C.W., BERTIN C.P.K. The effect of external knowledge on innovation capacity of SMES: Does the source of knowledge matter? // African Journal of Science, Technology, Innovation and Development. – 2022. – Vol. 14, No. 6. – P. 1655–1666.
  14. RADICIC D. Breadth of external knowledge search in service sectors // Business Process Management Journal. – 2021. – Vol. 27, No. 1. – Р. 230–252.
  15. RADICIC D., ALKARAAN F. Relative effectiveness of open innovation strategies in single and complex SME innovators // Technology Analysis & Strategic Management. – 2022. – doi: 10.1080/09537325.2022.2130042.
  16. RODRÍGUEZ-POSE A., DI CATALDO M. Quality of Gov-ernment and Innovative Performance in the Regions of Eu-rope // Journal of Economic Geography. – 2015. – Vol. 15, No. 4. – P. 673–706.
  17. SERRANO-BEDIA A.M., LÓPEZ-FERNÁNDEZ M., GAR-CÍA-PIQUERES G. Complementarity between innovation knowledge sources: Does the innovation performance meas-ure matter? // BRQ Business Research Quarterly. – 2018. – Vol. 21, No. 1. – P. 53–67.
  18. UGUR M., VIVARELLI M. Innovation, firm survival and productivity: the state of the art // Economics of Innovation and New Technology. – 2021. – Vol. 30, No. 5. – P. 433–467.
  19. WANG P., CEN C. Does digital economy development pro-mote innovation efficiency? A spatial econometric approach for Chinese regions // Technology Analysis & Strategic Management. – 2022. – doi: 10.1080/09537325.2022.2065980.
  20. YEH M.-L., CHU H.-P., SHER P. J., CHIU Y.-C. R&D intensity, firm performance and the identification of the threshold: fresh evidence from the panel threshold regression model // Applied Economics. – 2010. – Vol. 42, No. 3. – P. 389–401.
  21. ZHU Y., WANG Z., YANG J., ZHANG ZH. Evaluating per-formance of innovation resource allocation in industrial en-terprises: an improved two-stage DEA model // Technology Analysis & Strategic Management. – 2022. – doi: 10.1080/09537325.2022.2157254.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».