Algorithm for analysis of multispectral aerial images from uav for identification of water pollution using analytical methods and neural network approaches
- 作者: Diane S.A.1, Vytovtov K.A.1, Barabanova E.A.1
-
隶属关系:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- 期: 编号 108 (2024)
- 页面: 98-123
- 栏目: Information technologies in control
- URL: https://bakhtiniada.ru/1819-2440/article/view/284356
- DOI: https://doi.org/10.25728/ubs.2024.108.6
- ID: 284356
如何引用文章
全文:
详细
作者简介
Sekou Diane
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: diane1990@yandex.ru
Moscow
Konstantin Vytovtov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: vytovtov_konstan@mail.ru
Moscow
Elizaveta Barabanova
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: elizavetaalexb@yandex.ru
Moscow
参考
- ХАЙКИН С. Нейронные сети: полный курс. – М.: Виль-ямс, 2008. 1103 с.
- ALI N.M., KARIS M.S., SOBRAN N.M.M., BAHAR M.B. et al. Detection of multiple mangoes using histogram of ori-ented gradient technique in aerial monitoring // ARPN Journal of Engineering and Applied Sciences. 2017. Vol. 12 (8). P. 2730–2736.
- BARRIENTOS Z., NÁJERA J.M., ZÚÑIGA M. A Satellite and Ground Evaluation of Urban Vegetation and Infrastruc-ture in the Landscape of a Tropical City: Heredia, Costa Ri-ca // Cities and the environment. – 2013.
- CONG Z., YAN G., SHENGHUI F., KAILI Y. et al. Com-bining spectral and wavelet texture features for unmanned aerial vehicles remote estimation of rice leaf area index // Frontiers in Plant Science. 2022. Vol. 13. – doi: 10.3389/fpls.2022.957870.
- KANTH P.C., GUPTA N., ARI S. Change Detection in Mul-tispectral Satellite Images using Histogram based Thresh-olding Technique // Proc. of 2019 IEEE Int. Conf. on Elec-trical, Computer and Communication Technologies (ICECCT), Coimbatore, India. 2019. P. 1–5. – doi: 10.1109/ICECCT.2019.8869500.
- MENG L., ZHOU J., LIU S., DING L. et al. Investigation and evaluation of algorithms for unmanned aerial vehicle multispectral image registration, International // Journal of Applied Earth Observation and Geoinformation. 2021. – Vol. 102, 102403. – doi: 10.1016/j.jag.2021.102403.
- MOGHIMI A., YANG C., ANDERSON J.A. Aerial hyper-spectral imagery and deep neural networks for high-throughput yield phenotyping in wheat // Computers and Electronics in Agriculture. 2020. Vol. 172. – doi: 10.1016/j.compag.2020.105299.
- PYKA K. Wavelet-Based Local Contrast Enhancement for Satellite, Aerial and Close Range Images // Remote Sens. – 2017. – Vol. 9. – P. 25. – doi: 10.3390/rs9010025.
- RODRIGUES R.B., PELLEGRINO S., PISTORI H. Combin-ing Color and Haar Wavelet Responses for Aerial Image Classification // In: Artificial Intelligence and Soft Compu-ting / Eds. – Springer Berlin Heidelberg, 2012. Vol. 7267. P. 583–591. – doi: 10.1007/978-3-642-29347-4_68.
- RUBLEE E., RABAUD V., KONOLIGE K., BRADSKI G. ORB: an efficient alternative to SIFT or SURF // Proc. of the IEEE Int. Conf. on Computer Vision. 2011. P. 2564–2571.
- VASILYEV A.V., MELNIKOVA I.N., POBEROV-SKAYA L.N., TOVSTENKO I.A. Spectral brightness coeffi-cient of natural ground surfaces in spectral ranges 0.35 to 0.85 μm based on airborne measurements // Proc. SPIE 3237, 23rd European Meeting on Atmospheric Studies by Optical Methods. 1997. – doi: 10.1117/12.284763.
- VYTOVTOV K.A., BARABANOVA E.A., GLAD-KIKH T.Y., KULINA A.L. et al. Remote Monitoring of Wa-ter Pollution With Oil Products in the Visible Range by Us-ing UAV Multispectral Camera // Proc. 2022 Int. Conf. on Information, Control, and Communication Technologies (ICCT-2022), Astrakhan, Russian Federation, 2022. P. 1–5. – doi: 10.1109/ICCT56057.2022.9976826.
- XIANG T.-Z., XIA G.-S., ZHANG L. Mini-Unmanned Aeri-al Vehicle-Based Remote Sensing: Techniques, applications, and prospects // IEEE Geoscience and Remote Sensing Magazine. 2019. Vol. 7, No. 3. P. 29–63. – doi: 10.1109/MGRS.2019.2918840.
- ZAMPIERI A., CHARPIAT G., GIRARD N., TARABAL-KA Y. Multimodal image alignment through a multiscale chain of neural networks with application to remote sensing // The European Conference on Computer Vision (ECCV). 2018. P. 657–673. – doi: 10.1007/978-3-030-01270-0_40.
- ZHANG Z., HANSON A.R. 3D Reconstruction based on homography mapping // Proc. ARPA96. 1996. P. 1007–1012.
补充文件
