Comparison of coarse-grained and all-atom “membrane-solvent” systems as models of memcapacitors under alternating electric field

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: The lipid membrane is one of the most important structures of a living cell, representing a barrier with selective permeability. Many biological processes are associated with changes in the concentration of positive and negative ions inside and outsidethe cell. Inthis regard, themembrane ismore widely represented as an electric capacitor. Inmodern studies onthe effect of an alternating field on biomolecular lipids, the existence of a nonlinear capacitance-voltage dependence is also mentioned, which makes the lipid membrane a promising candidate for the role of amemcapacitor. Since the use of practicalmembranemodels is associated with their instability, themolecular dynamics method has become widespread. A similar memory effect was obtained in studies using a coarse-grained model. On all-atom systems, this effect is poorly represented in the literature. The all-atom model more fully describes the interaction of particles, so it would be relevant to compare the coarse-grained and all-atomic membrane-solvent system as models of a memcapacitor under the influence of an alternating electric field. Materials and Methods: The studied system consisted of a lipid membrane immersed in an aqueous KCl solution. Two quantitatively similar systems consisted of 512 lipid molecules, such as dipalmitoylphosphatidylcholine (1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine), two water compartments of 40 Å and 3 M salt. Two types of force fields were used in the work, a all-atom charmm36m, as well as coarse-grained force fields martni22p and a modified force field – v2.2refPOL+refION. An alternating electric field with a strength of 0.5, 1.0 and 1.5 V/nm with a frequency of 1 GHz was applied to the systems. Molecular dynamics simulations were performed using GROMACS. Results: Under the action of the field, each system has behaved as a “classical” capacitor, where oppositely charged particles have been accumulated on opposite sides of the membrane. The nature of the ion distribution is also similar for the studied systems, positive particles are able to penetrate into the membrane, located inside the hydrophilic structures, and the charge peaks of negative particles are outside the membrane. A significant difference between the all-atom and coarse-grained models is the numerical value of the accumulated charge. Based on the results obtained, we can also talk about the nonlinear dependence of the total charge value in relation to the field strength value and the existence of the hysteresis effect. Conclusion: In this regard, the presented systems can be used to study the memcapacitive properties. 

About the authors

Ilya I. Zlochevskiy

Volgograd State Technical University

ORCID iD: 0009-0002-9094-7830
SPIN-code: 1376-1302
Волгоград, просп. имени В.И. Ленина, 28

Dmitry V. Zav’yalov

Volgograd State Technical University

ORCID iD: 0000-0002-9497-9613
SPIN-code: 7272-1991
Волгоград, просп. имени В.И. Ленина, 28

References

  1. El-Beyrouthy J., Freeman E. Characterizing the structure and interactions of model lipid membranes using electrophysiology. Membranes, 2021, vol. 11, iss. 5, art. 319. https://doi.org/10.3390/membranes11050319
  2. Taylor G. J., Venkatesan G. A., Collier C. P., Sarles S. A. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer. Soft Matter., 2015, vol. 11, iss. 38, pp. 7592–7605. https://doi.org/10.1039/c5sm01005e
  3. El-Beyrouthy J., Makhoul-Mansour M. M., Taylor G., Sarles S. A., Freeman E. C. A new approach for investigating the response of lipid membranes to electrocompression by coupling droplet mechanics and membrane biophysics. J. of the Royal Society Interface, 2019, vol. 16, iss. 161, art. 20190652. https://doi.org/10.1098/rsif.2019.0652
  4. Gross L. C. M., Heron J. R., Baca S. C., Wallace M. I. Determining membrane capacitance by dynamic control of droplet interface bilayer area. Langmuir, 2011, vol. 27, iss. 23, pp. 14335–14342. https://doi.org/10.1021/la203081v
  5. Najem J. S., Hasan M. S., Williams R. S., Weiss R. J., Rose G. S., Taylor G. J., Sarles S. A., Collier C. P. Dynamical nonlinear memory capacitance in biomimetic membranes. Nature Communications, 2019, vol. 10, iss. 1, art. 3239. https://doi.org/10.1038/s41467-019-11223-8
  6. Smirnova E. Y., Anosov A. A. Bilayer lipid membrane as memcapacitance: Capacitance-voltage pinched hysteresis and negative insertion conductance. Membranes, 2023, vol. 13, iss. 1, art. 97. https://doi.org/10.3390/membranes13010097
  7. Di Ventra M., Pershin Y. V. On the physical properties of memristive, memcapacitive and meminductive systems. Nanotechnology, 2013, vol. 24, no. 25, art. 255201. https://doi.org/10.1088/0957-4484/24/25/255201
  8. Yin Z. Y., Tian H., Chen G. H., Chua L. O. What are memristor, memcapacitor and meminductor? IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, vol. 62, iss. 4, pp. 402–406. https://doi.org/10.1109/TCSII.2014.2387653
  9. Pershin Y. V., Di Ventra M. Memcapacitive neural networks. Electronics Letters, 2014, vol. 50, iss. 3, pp. 141–143. https://doi.org/10.1049/el.2013.2463
  10. Hsieh M. K., Yu Y., Klauda J. B. All-atom modeling of complex cellular membranes. Langmuir, 2021, vol. 38, iss. 1, pp. 3–17. https://doi.org/10.1021/acs.langmuir.1c02084
  11. Sharma P., Desikan R., Ayappa K. G. Evaluating coarsegrained MARTINI force-fields for capturing the ripple phase of lipid membranes. J. Phys. Chem. B, 2021, vol. 125, iss. 24, pp. 6587–6599. https://doi.org/10.1021/acs.jpcb.1c03277
  12. Guo J., Bao Y., Li M., Li S., Xi L., Xin P., Wu L., Liu H., Mu Y. Application of computational approaches in biomembranes: From structure to function. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, vol. 13, iss. 6, art. e1679. https://doi.org/10.1002/wcms.1679
  13. Periole X., Marrink S. J. The Martini coarse-grained force field. Biomolecular Simulations: Methods and Protocols, 2012, pp. 533–565. https://doi.org/10.1007/978-1-62703-017-5_20
  14. Polak A., Bonhenry D., Dehez F., Kramar P., Miklavčič D., Tarek M. On the electroporation thresholds of lipid bilayers: Molecular dynamics simulation investigations. J. of Membrane Biology, 2013, vol. 246, no. 11, pp. 843–850. https://doi.org/10.1007/s00232-013-9570-7
  15. S. A. Kirsch, R. A. Böckmann. Membrane pore formation in atomistic and coarse-grained simulations. Biochimica et Biophysica Acta (BBA) – Biomembranes, 2016, vol. 1858, no. 10, pp. 2266–2277. https://doi.org/10.1016/j.bbamem.2015.12.031
  16. Lavrentovich M. O., Carrillo J. M. Y., Collier C. P., Katsaras J., Bolmatov D. Curvature memory in electrically stimulated lipid membranes. Langmuir, 2025, vol. 41, iss. 5, pp. 3157–3165. https://doi.org/10.1021/acs.langmuir.4c03799
  17. Scott H. L., Bolmatov D., Premadasa U. I., Doughty B., Carrillo J. M. Y., Sacci R. L., Lavrentovich M., Collier C. P. Cations control lipid bilayer memcapacitance associated with long-term potentiation. ACS Applied Materials & Interfaces, 2023, vol. 15, iss. 37, pp. 44533–44540. https://doi.org/10.1021/acsami.3c09056
  18. Zlochevskiy I. I., Zav’yalov D. V. The effect of an alternating electric field on the DPPC membrane system in an aqueous NaCl solution. Math. Phys. Comp. Sim., 2023, vol. 26, no. 3, pp. 105–114. https://doi.org/10.15688/mpcm.jvolsu.2023.3.8
  19. Klauda J. B., Venable R. M., Freites J. A., O’Connor J. W., Tobias D. J., Mondragon-Ramirez C., Vorobyov I., MacKerell Jr. A. D., Pastor R. W. Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. J. Phys. Chem. B, 2010, vol. 114, iss. 23, pp. 7830–7843. https://doi.org/10.1021/jp101759q
  20. Marrink S. J., De Vries A. H., Mark A. E. Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B, 2004, vol. 108, iss. 2, pp. 750–760. https://doi.org/10.1021/jp036508g
  21. Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P., de Vries A. H. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B, 2007, vol. 111, iss. 27, pp. 7812–7824. https://doi.org/10.1021/jp071097f
  22. Wassenaar T. A., Ingolfsson H. I., Bockmann R. A., Tieleman D. P., Marrink S. J. Computational lipidomics with insane: A versatile tool for generating custom membranes for molecular simulations. J. of Chemical Theory and Computation, 2015, vol. 11, iss. 5, pp. 2144–2155. https://doi.org/10.1021/acs.jctc.5b00209
  23. Michalowsky J., Michalowsky J., Schafer L. V., Holm C., Smiatek J. A refined polarizable water model for the coarse-grained MARTINI force field with long-range electrostatic interactions. J. Chem. Phys., 2017, vol. 146, iss. 5, art. 054501. https://doi.org/10.1063/1.4974833
  24. Michalowsky J., Zeman J., Holm C., Smiatek J. A polarizable MARTINI model for monovalent ions in aqueous solution. J. Chem. Phys., 2018, vol. 149, iss. 16, art. 163319. https://doi.org/10.1063/1.5028354
  25. Souza P. C. T., Alessandri R., Barnoud J., Thallmair S., Faustino I., Grünewald F., Patmanidis I., Abdizadeh H., Bruininks B. M. H., Wassenaar T. A., Kroon P. C., Melcr J., Nieto V., Corradi V., Khan H. M., Domański J., Javanainen M., Martinez-Seara H., Reuter N., Best R. B., Vattulainen I., Monticelli L., Periole X., Tieleman D. P., de Vries A. H., Marrink S. J. Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nature Methods, 2021, vol. 18, pp. 382–388. https://doi.org/10.1038/s41592-021-01098-3
  26. Miyazaki Y., Okazaki S., Shinoda W. PSPICA: A coarse-grained force field for lipid membranes based on a polar water model. J. of Chemical Theory and Computation, 2020, vol. 16, iss. 1, pp. 782–793. https://doi.org/10.1021/acs.jctc.9b00946A
  27. Pastor R. W., MacKerell A. D. Development of the CHARMM force field for lipids. J. Phys. Chem. Lett., 2011, vol. 2, iss. 13, pp. 1526–1532. https://doi.org/10.1021/jz200167q
  28. Basdevant N., Dessaux D., Ramirez R. Ionic transport through a protein nanopore: A Coarse-Grained Molecular Dynamics Study. Scientific Reports, 2019, vol. 9, iss. 1, art. 15740. https://doi.org/10.1038/s41598-019-51942-y
  29. Jo S., Kim T., Iyer V. G., Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comp. Chem., 2008, vol. 29, iss. 11, pp. 1859–1865. https://doi.org/10.1002/jcc.20945
  30. Patra M., Karttunen M., Hyvönen M. T., Falck E., Lindqvist P., Vattulainen I. Molecular dynamics simulations of lipid bilayers: Major artifacts due to truncating electrostatic interactions. Biophysical Journal, 2003, vol. 84, iss. 6, pp. 3636–3645. https://doi.org/10.1016/S0006-3495(03)75094-2

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».