On the properties of stationary configurations of a rotating self-gravitating ideal fluid with a vortex gravitational field
- Authors: Krechet V.G.1, Oshurko V.B.1, Kisser A.E.1
-
Affiliations:
- Moscow State University of Technology "STANKIN"
- Issue: Vol 25, No 4 (2025)
- Pages: 396-407
- Section: Theoretical and Mathematical Physics
- URL: https://bakhtiniada.ru/1817-3020/article/view/357323
- DOI: https://doi.org/10.18500/1817-3020-2025-25-4-396-407
- EDN: https://elibrary.ru/FIWRDU
- ID: 357323
Cite item
Full Text
Abstract
Keywords
About the authors
Vladimir G. Krechet
Moscow State University of Technology "STANKIN"
ORCID iD: 0009-0006-3608-5116
SPIN-code: 9689-3298
Москва, Вадковский пер., д.3а
Vadim Borisovich Oshurko
Moscow State University of Technology "STANKIN"
ORCID iD: 0000-0001-8566-6407
SPIN-code: 8344-8772
Scopus Author ID: 8426918600
Москва, Вадковский пер., д.3а
Alexey Eduardovich Kisser
Moscow State University of Technology "STANKIN"
ORCID iD: 0009-0009-1489-976X
SPIN-code: 3126-4947
Москва, Вадковский пер., д.3а
References
- Blanco-Pillado J. J., Cui Y., Kuroyanagi S., Lewicki M., Nardini G., Pieroni M., Rybak I., Lara Sousa L., Wachter J. M. Gravitational waves from cosmic strings in LISA: Reconstruction pipeline and physics interpretation. J. Cosmol. Astropart. Phys., 2025, vol. 2025, iss. 05, art. 006. https://doi.org/10.1088/1475-7516/2025/05/006
- Blasi S., Calibbi L., Mariotti A., Turbang K. Gravitational waves from cosmic strings in Froggatt-Nielsen flavour models. J. High Energy Phys., 2025, vol. 2025, iss. 5, art. 19. https://doi.org/10.1007/JHEP05(2025)019
- Öner B. B., Yeєiltaє Ö. Quantum particle creation by cosmic strings in de Sitter spacetime. Class. Quant. Grav., 2025, vol. 42, iss. 9, art. 095001. https://doi.org/10.1088/1361-6382/adcb12
- Algaba J. C., Balokoviж M., Chandra S., Cheong W.-Y., Cui Y.-Z., D’Ammando F., Falcone A. D., Ford N. M., Giroletti M., Goddi C., Gurwell M. A., Hada K., Haggard D., Jorstad S., Kaur A., Kawashima T., Kerby S., Kim J.-Y., Kino M., Kravchenko E. V. [et al.]. Broadband multi-wavelength properties of M87 during the 2018 EHT campaign including a very high energy flaring episode. Astron. Astrophys., 2024, vol. 692, art. A140. https://doi.org/10.1051/0004-6361/202450497
- Kiehlmann S., de la Parra P. V., Sullivan A. G., Synani A., Liodakis I., Readhead A. C. S., Graham M. J., Begelman M. C., Blandford R. D., Chatziioannou K., Ding Y., Harrison F., Homan D. C., Hovatta T., Kulkarni S. R., Lister M. L., Maiolino R., Max-Moerbeck W., Molina B., Mróz P. [et al.]. PKS 2131–021 – Discovery of strong coherent sinusoidal variations from radio to optical frequencies: Compelling evidence for a blazar supermassive black hole binary. Astrophys. J., 2025, vol. 985, iss. 1, art. 59. https://doi.org/10.3847/1538-4357/adc567
- Seo J., Ryu D., Kang H. Energy Spectrum and Mass Composition of Ultra-high-energy Cosmic Rays Originating from Relativistic Jets of Nearby Radio Galaxies. Astrophys. J., 2025, vol. 988, iss. 2, art. 194. https://doi.org/10.3847/1538-4357/ade678
- Birch P. Is the Universe rotating? Nature, 1982, vol. 298, iss. 5873, pp. 451–454. https://doi.org/10.1038/298451a0
- Monteiro S. W. Jr., Tomimura N. A. Existence and causality of cylindrically symmetric cosmological models with rotating spin fluids. Class. Quant. Grav., 1991, vol. 8, iss. 5, pp. 977–984. https://doi.org/10.1088/0264-9381/8/5/021
- Mishra B., Vadrevu S. Cylindrically symmetric cosmological model of the universe in modified gravity. Astrophys. Sp. Sci., 2017, vol. 362, iss. 2, art. 26. https://doi.org/10.1007/s10509-017-3006-2
- Panov V. F., Pavelkin V. N., Kuvshinova E. V., Sandakova O. V. Kosmologiya s vrashcheniem [Cosmology with rotation]. Perm, Perm State University Publ., 2016. 224 p. (in Russian).
- Krechet V. G., Oshurko V. B., Kisser A. E. Stationary Rotating Cosmological Model Without Violation of the Causal Structure. Russ. Phys. J., 2022, vol. 65, iss. 6, pp. 937–943. https://doi.org/10.1007/s11182-022-02716-z
- Su S.-C., Chu M-C. Is the Universe Rotating? Astrophys. J., 2009, vol. 703, iss. 1, pp. 354–361. https://doi.org/10.1088/0004-637X/703/1/354
- Godіowski W. Global and Local Effects of Rotation: Observational Aspects. Int. J. Mod. Phys. D, 2011, vol. 20, iss. 09, pp. 1643–1673. https://doi.org/10.1142/S0218271811019475
- Korotky V. A., Masár E., Obukhov Y. N. In the quest for cosmic rotation. Universe, 2020, vol. 6, iss. 1, art. 14. https://doi.org/10.3390/universe6010014
- Morris M. S., Thorne K. S., Yurtsever U. Wormholes, time machines and the weak energy condition. Phys. Rev. Lett., 1988, vol. 61, iss. 13, pp. 1446–1449. https://doi.org/10.1103/PhysRevLett.61.1446
- Morris M. S., Thorne K. S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Amer. J. Phys., 1988, vol. 56, iss. 5, pp. 395–412. https://doi.org/10.1119/1.15620
- Krechet V. G. Topological and physical effects of rotation and spin in the general relativistic theory of gravitation. Russ. Phys. J., 2007, vol. 50, iss. 10, pp. 1021–1025. https://doi.org/10.1007/s11182-007-0147-8
- Krechet V. G., Sadovnikov D. V. Spin-spin interaction in general relativity and induced geometries with nontrivial topology. Grav. Cosmol., 2009, vol. 15, iss. 4, pp. 337–340. https://doi.org/10.1134/S0202289309040082
- Novikov I. D., Shatskiy A. A. Stability analysis of a Morris-Thorne-Bronnikov-Ellis wormhole with pressure. J. Exp. Theor. Phys., 2012, vol. 114, iss. 5, pp. 801–804. https://doi.org/10.1134/S1063776112040127
- Bronnikov K. A., Krechet V. G., Lemos J. P. S. Rotating cylindrical wormholes. Phys. Rev. D, 2013, vol. 87, iss. 8, art. 084060. https://doi.org/10.1103/PhysRevD.87.084060
- Bronnikov K. A., Krechet V. G. Potentially observable cylindrical wormholes without exotic matter in general relativity. Phys. Rev. D, 2019, vol. 99, iss. 8, art. 084051. https://doi.org/10.1103/PhysRevD.99.084051
- Bronnikov K. A., Sushkov S. V. Current Problems and Recent Advances in Wormhole Physics. Universe, 2023, vol. 9, iss. 2, art. 81. https://doi.org/10.3390/universe9020081
- Bronnikov K. A., Kashargin P. E., Sushkov S. V. Possible Wormholes in a Friedmann Universe. Universe, 2023, vol. 9, iss. 11, art. 465. https://doi.org/10.3390/universe9110465
- Bolokhov S. V., Skvortsova M. Correspondence between quasinormal modes and grey-body factors of spherically symmetric traversable wormholes. J. Cosmol. Astropart. Phys., 2025, vol. 2025, iss. 04, art. 025. https://doi.org/10.1088/1475-7516/2025/04/025
- Bolokhov S. V., Konoplya R. A. Circumventing quantum gravity: Black holes evaporating into macroscopic wormholes. Phys. Rev. D, 2025, vol. 111, iss. 6, art. 064007. https://doi.org/10.1103/PhysRevD.111.064007
- Hoenselaers C., Vishveshwara C. V. A relativistically rotating fluid cylinder. Gen. Rel. Grav., 1979, vol. 10, iss. 1, pp. 43–51. https://doi.org/10.1007/BF00757022
- Santos N. O., Mondaini R. P. Rigidly rotating relativistic generalized dust cylinder. Il Nuovo Cimento B, 1982, vol. 72, iss. 1, pp. 13–20. https://doi.org/10.1007/BF02894930
- Davidson W. Barotropic perfect fluid in steady cylindrically symmetric rotation. Class. Quant. Grav., 1997, vol. 14, iss. 1, pp. 119–127. https://doi.org/10.1088/0264-9381/14/1/013
- Ivanov B. V. On rigidly rotating perfect fluid cylinders. Class. Quant. Grav., 2002, vol. 19, iss. 14, pp. 3851–861. https://doi.org/10.1088/0264-9381/19/14/323
- Ivanov B. V. Rigidly rotating cylinders of charged dust. Class. Quant. Grav., 2002, vol. 19, iss. 20, pp. 5131–5139. https://doi.org/10.1088/0264-9381/19/20/307
- Bonnor W. B., Steadman B. R. A vacuum exterior to Maitra’s cylindrical dust solution. Gen. Rel. Grav., 2009, vol. 41, iss. 6, pp. 1381–1387. https://doi.org/10.1007/s10714-008-0725-2
- Bolokhov S. V., Bronnikov K. A., Skvortsova M. V. Rotating Cylinders with Anisotropic Fluids in General Relativity. Grav. Cosmol., 2019, vol. 25, iss. 2, pp. 122–130. https://doi.org/10.1134/S020228931902004X
- Krechet V. G., Oshurko V. B., Baidin A. E. On the Properties of Stationary Distributions of Gravitational Vortex Fields and Continuous Media. Russ. Phys. J., 2020, vol. 63, iss. 6, pp. 1045–1054. https://doi.org/10.1007/s11182-020-02135-y
- Krechet V. G., Oshurko V. B., Baidin A. E. Gravitational and Electromagnetic Effects in the Configuration of a Rotating Electrically Charged Ideal Liquid. Russ. Phys. J., 2022, vol. 65, iss. 3, pp. 410–422. https://doi.org/10.1007/s11182-022-02649-7
- Krechet V. G., Oshurko V. B., Sinil’shchikova I. V. On the possible existence of wormholes without gravitational forces. Russ. Phys. J., 2016, vol. 59, iss. 1, pp. 32–40. https://doi.org/10.1007/s11182-016-0735-6
- Luminet J.-P. Closed Timelike Curves, Singularities and Causality: A Survey from Gödel to chronological protection. Universe, 2021, vol. 7, iss. 1, art. 12. https://doi.org/10.3390/universe7010012
- Nguyen H. K., Lobo F. S. N. Closed Timelike Curves Induced by a Buchdahl-Inspired Vacuum Spacetime in R2 Gravity. Universe, 2023, vol. 9, iss. 11, art. 467. https://doi.org/10.3390/universe9110467
- Ahmed F., de Souza J. C. R., Santos A. F. Vacuum spacetime with closed time-like curves in the context of Ricci-inverse gravity. Mod. Phys. Lett. A, 2025, vol. 40, iss. 4, art. 2450221. https://doi.org/10.1142/S0217732324502213
- Landau L. D., Lifshitz E. M. Course of Theoretical Physics: in 10 vols. Vol. 2. The Classical Theory of Fields: 4th edition. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, Butterworth-Heinemann, 1980. 444 p.
- CERN Press Release: New State of Matter created at CERN, Feb. 10, 2000. Available at: https://home.cern/news/press-release/cern/new-state-matter-created-cern (accessed September 21, 2025)
- Tannenbaum M. J. Recent results in relativistic heavy ion collisions: From a new state of matter to the perfect fluid. Rep. Prog. Phys., 2006, vol. 69, iss. 7, pp. 2005–2059. https://doi.org/10.1088/0034-4885/69/7/R01
- Heinz U. Quark-gluon soup – The perfectly liquid phase of QCD. Int. J. Mod. Phys. A, 2015, vol. 30, iss. 2, art. 1530011. https://doi.org/10.1142/S0217751X15300112
Supplementary files

