Метрика Вассерштейна и взвешенные метрики для многомерных распределений Гаусса

Обложка

Цитировать

Полный текст

Аннотация

Приводится ряд нижних и верхних оценок для расстояний Леви – Прохорова, Вассерштейна, Фреше и Хеллингера между вероятностными распределениями одной и той же или разных размерностей. Вводится взвешенное (или контекстно зависимое) расстояние полной вариации и расстояние Хеллингера. Доказаны верхняя и нижняя оценки для этих взвешенных метрик. Доказаны нижние оценки минимума суммы различных ошибок при проверке чувствительных гипотез.

Об авторах

Марк Яковлевич Кельберт

Национальный исследовательский университет «Высшая школа экономики»

ORCID iD: 0000-0002-3952-2012
Scopus Author ID: 55884702600
Россия, 101000, г. Москва, ул. Мясницкая, д. 20

Юрий Михайлович Сухов

Университет штата Пенсильвания; Кембриджский университет

Scopus Author ID: 35582648200
Соединенные Штаты Америки, Пенсильвания, 16802, г. Стейт-Колледж, кампус Юниверсити-Парк, ул. Олд Мейн, д. 201

Список литературы

  1. Vallander S. S. Calculation of the Wasserstein distance between probability distributions on the line. Theory of Probability & Its Applications, 1974, vol. 18, iss. 4, pp. 784–786. https://doi.org/10.1137/1118101
  2. Rachev S. T. The Monge – Kantorovich mass transference problem and its stochastic applications. Theory of Probability & Its Applications, 1985, vol. 29, iss. 4, pp. 647–676. https://doi.org/10.1137/1129093
  3. Givens C. R., Shortt R. M. A class of Wasserstein metrics for probability distributions. The Michigan Mathematical Journal, 1984, vol. 31, iss. 2, pp. 231–240. https://doi.org/10.1307/mmj/1029003026
  4. Olkin I., Pukelsheim F. The distances between two random vectors with given dispersion matrices. Linear Algebra and its Applications, 1982, vol. 48, pp. 257–263. https://doi.org/10.1016/0024-3795(82)90112-4
  5. Dowson D. C., Landau B. V. The Frechet distance between multivariate Normal distributions. Journal of Multivariate Analysis, 1982, vol. 12, iss. 3, pp. 450–455. https://doi.org/10.1016/0047-259X(82)90077-X
  6. Cai Y., Lim L.-H., Distances between probability distributions of different dimensions. IEEE Transactions on Information Theory, 2022, vol. 68, iss. 6, pp. 4020–4031. https://doi.org/10.1109/TIT.2022.3148923
  7. Dwivedi A., Wang S., Tajer A. Discriminant analysis under f-divergence measures. Entropy, 2022, vol. 24, iss. 2, art. 188, 26 p. https://doi.org/10.3390/e24020188
  8. Devroye L., Mehrabian A., Reddad T. The total variation distance between high-dimensional Gaussians. ArXiv, 2020, ArXiv:1810.08693v5, pp. 1–12.
  9. Endres D. M., Schindelin J. E. A new metric for probability distributions. IEEE Transactions on Information Theory, 2003, vol. 49, iss. 7, pp. 1858–1860. https://doi.org/10.1109/TIT.2003.813506
  10. Stuhl I., Suhov Y., Yasaei Sekeh S., Kelbert M. Basic inequalities for weighted entropies. Aequationes Mathematicae, 2016, vol. 90, iss. 4, pp. 817–848. https://doi.org/10.1007/s00010-015-0396-5
  11. Stuhl I., Kelbert M., Suhov Y., Yasaei Sekeh S. Weighted Gaussian entropy and determinant inequalities. Aequationes Mathematicae, 2022, vol. 96, iss. 1, pp. 85–114. https://doi.org/10.1007/s00010-021-00861-3

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».