Formation of Langmuir monolayers from native phospholipids of bacteria of various systematic groups

Cover Page

Cite item

Full Text

Abstract

Phospholipids are the most important structural elements of the bacterial cell wall, participate in the adaptation of microorganisms to the environment and can act as biomarkers for environmental changes and one of the components of environmental monitoring. Native phospholipids are used to form models of cell membranes, the biophysical properties of which can be studied by the Langmuir-Blodgett method. The aim of this work was to isolate and characterize the phospholipids of the cell membranes of the bacteria Staphylococcus aureus and Bacillus cereus and the formation of Langmuir monolayers based on them. The composition and ratio of fatty acids were determined by gas-liquid chromatography of fatty acid methyl esters. Fatty acids, found in the extract of the bacteria S. aureus 209-P and B. cereus 8035, are: hexadecanoic, trans-9-octadecenoic, octadecanoic, tetradecanoic, 13-methyltetradecanoic, 14-methylpentadecanoic, 15-methylhexadecanoic, cis-9-octadecanoic. To form a monolayer, a working solution of native phospholipids in chloroform with a concentration of C = 10-3 М was used. The monolayer formed when a 50 μl solution of a phospholipid mixture is applied to the surface has a more perfect structure, which is manifested in the constancy of its mechanical properties. The analysis of the obtained data has not yet revealed a clear dependence of the monolayer parameters on temperature. The changes in the compression modulus and compressibility were very minor. With an increase in the salt concentration, both an increase and a decrease in the compression modulus, and, consequently, the rigidity of the monolayer, is observed.

About the authors

Viktoria A. Kuznetsova

Saratov State University

ORCID iD: 0000-0001-6329-1587
83, Astrakhanskaya str., Saratov, 410012, Russia

Matvey V. Kanevsky

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

Elena V. Glinskaya

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

Evgeny G. Glukhovskoy

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

References

  1. Sastre D. E., Basso L. G. M. Membrane fl uidity adjusts the insertion of the transacylase PlsX to regulate phospholipid biosynthesis in Gram-positive bacteria // J. Biol. Chem. 2020. Vol. 295, № 7. P. 36–47. https://doi.org/10.1074/jbc.RA119.011122
  2. Shrivastava R., Jiang X., Chng S. S. Outer membrane lipid homeostasis via retrograde phospholipid transport in Escherichia coli // Mol. Microbiol. 2017. Vol. 106, № 3. P. 395–408. https://doi.org//10.1111/mmi.13772
  3. Андрюков Б. Г., Ляпун И. Н. Значение мембранных фосфолипидов в реализации защитных стратегий бактерий // Журнал микробиологии, эпидемиологии и иммунологии. 2020. Т. 97, № 6. С. 594–603. https://doi.org/10.36233/0372-9311-2020-97-6-10
  4. Hassan N., Anesio A. M, Rafi q M., Holtvoeth J., Bull I., Haleem A., Shah A. A., Hasan F. Temperature driven membrane lipid adaptation in glacial psychrophilic bacteria // Front Microbiol. 2020. Vol. 11. P. 824. https://doi.org/10.3389/fmicb.2020.00824
  5. Anders H., Power J. F., MacKenzie A. D., Lagutin K., Vyssotski M., Hanssen E., Moreau J. W., Stott M. B. Limisphaera ngatamarikiensis gen. nov., sp. nov., a thermophilic, pink-pigmented coccus isolated from subaqueous mud of a geothermal hotspring // Int. J. Syst. Evol. Microbiol. 2015. Vol. 65, № 4. P. 1114–1121. https://doi.org/10.1099/ijs.0.000063
  6. Barut D., Enuh B. M., Derkuş B., Güler Ü., Salih B., Aytar Çelik P. The relationship between bacterial outer membrane vesicles and halophilic adaptation // Mol. Omics. 2023. Vol. 19, № 2. P. 174–181. https://doi.org/10.1039/d2mo00259k
  7. Суходолов Н. Г., Иванов Н. С., Подольская Е. П. Новые материалы, полученные методом Ленгмюра-Блоджетт, и их применение в нанотехнологии и приборостроении (гибридные материалы) // Научное приборостроение. 2013. Т. 23, № 1. С. 86–105.
  8. Зубова К. В., Кузнецова В. А., Аль-Альвани А. Ж., Глинская Е. В., Каневский М. В., Глуховской Е. Г. Исследования ленгмюровских монослоев фосфолипидов, выделенных из мембран тест-культуры E. coli K-12 // Актуальные вопросы биологической физики и химии. БФФХ. 2021. Т. 6, № 2. С. 68–69.
  9. Brezesinski G., Möhwald H. Langmuir monolayers to study interactions at model membrane surfaces // Advances in colloid and interface science. 2003. Vol. 100. P. 563–584. https://doi.org/10.1016/S00018686(02)00071-4
  10. Кузнецова В. А., Зубова К. В., Глинская Е. В., Глуховской Е. Г. Выделение нативных фосфолипидов бактерий E. coli K-12 и апробация их при формировании монослоев Ленгмюра // Методы компьютерной диагностики в биологии и медицине. 2021. Т. 3. С. 57–61.
  11. Berenblum I., Chain E. An improved method for the colorimetric determination of phosphate // Biochem J. 1938. Vol. 32, № 2. P. 295–298.
  12. Mayer H., Tharanathan R. N., Weckesser J. Analysis of lipopolysaccharide of Gram-negative bacteria // Meth. Microbiol. 1985. Vol. 18. P. 157–207. https://doi.org/10.1016/S0580-9517(08)70475-6
  13. Smirnova A. I., Giricheva N. I., Soldatova K. M., Ezhov A. V., Glukhovskoy E. G., Usol’tseva N. V. Phthalocyanine and porphyrin derivatives of А3B-type: Quantum-chemical modeling of dimmers // Liq. Cryst. and their Appl. 2021. Vol. 21, №1. P. 50–60. https://doi.org/10.18083/LCAppl.2021.1.50
  14. Wang Y., Shen J., Meng F., Lu Z., Lv F., Zhou L., Zhao H. Effects of monolauroyl-galactosylglycerol on membrane fatty acids and properties of Bacillus cereus // Applied Microbiology and Biotechnology. 2023. Vol. 107. P. 1–13. https://doi.org/10.1007/s00253-023-12567-4
  15. Boudjemaa R., Cabriel C., Dubois-Brissonnet F., Bourg N., Dupuis G., Gruss A., Sandrine L.-F., Romain B., Marie-Pierre F.-A., Steenkeste K. Impact of bacterial membrane fatty acid composition on the failure of daptomycin to kill Staphylococcus aureus // Antimicrobial Agents and Chemotherapy. 2018. Vol. 62, № 7. P. 10. https://doi.org/10.1128/aac.00023-18
  16. Андрюков Б. Г., Сомонова Л. М., Тимченко Н. Ф. Жирные кислоты как объект исследования температурных адаптационных стратегий микроорганизмовпсихрофилов // Здоровье. Медицинская экология. Наука. 2015. Т. 3, № 61. С. 43–49.
  17. Begletsova N. N, Mironyuk V. N., Ezhov A. V., Smirnova A. I., Usoltseva N. V., Glukhovskoy E. G. Features of formation of Langmur monolayers of porphyrin derivatives on the surface of aqueous solutions of copper nanopartickes // J. Phys.: Conf. Ser. 2020. Vol. 1697. P. 012118. https://doi.org/10.1088/1742-6596/1697/ 1/012118
  18. Шипко Е. С., Дуванова О. В. Изменение спектра жирных кислот как один из механизмов адаптации/ персистенции микроорганизмов // Журн. микробиол. 2019. Т. 5. С. 109–118.
  19. Choma C., Clavel T., Dominguez H., Razafi ndramboa N., Soumille H., Nguyen-the C., Schmitt P. Effect of temperature on growth characteristics of Bacillus cereus TZ415 //International Journal of Food Microbiology. 2000. Vol. 55, № 1-3. P. 73–77. https://doi.org/10.1016/S0168-1605(00)00197-5
  20. Valero A., Pérez-Rodríguez F., Carrasco E., FuentesAlventosa J. M., García-Gimeno R. M., Zurera G. Modelling the growth boundaries of Staphylococcus aureus: Effect of temperature, pH and water activity // International Journal of Food Microbiology. 2009. Vol. 133, № 1–2. P. 186–194. https://doi.org/10.1016/j. ijfoodmicro.2009.05.023
  21. Lee S., Choi K. H., Yoon Y. Effect of NaCl on biofi lm formation of the isolate from Staphylococcus aureus outbreak linked to ham // Korean Journal for Food Science of Animal Resources. 2014. Vol. 34, № 2. P. 257. https://doi.org/10.5851/kosfa.2014.34.2.257
  22. Raevuori M., Genigeorgis C. Effect of pH and sodium chloride on growth of Bacillus cereus in laboratory media and certain foods // Applied Microbiology. 1975. Vol. 29, № 1. P. 68–73. https://doi.org/10.1128/am.29.1.68- 73.1975
  23. Qassime M. M., Goryacheva V. A., Al-Alwani A. J., Lugovitskaya T. N., Shipovskaya A. B., Glukhovskoy E. G. A studying of subphase temperature and dissolved ascorbic acid concentration infl uence on the process of Langmuir monolayer formation // Journal of Physics: Conference Series. IOP Publishing, 2018. Vol. 1124, № 3. P. 031010. https://doi.org/10.1088/1742- 6596/1124/3/031010
  24. Naveen K., Lei W., Igor S., Michel D., Frieder M. Salt dependent stability of stearic acid Langmuir–Blodgett fi lms exposed to aqueous electrolytes // Langmuir. 2013. Т. 29, № 17. С. 5150–5159. https://doi.org/10.1021/la400615j

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».