Выпучивание физически нелинейных пластин под действием динамических сдвигающих нагрузок
- Авторы: Иванов С.П.1,2
 - 
							Учреждения: 
							
- Поволжский государственный технологический университет
 - Марийский государственный университет
 
 - Выпуск: Том 18, № 1 (2022)
 - Страницы: 3-10
 - Раздел: Расчет и проектирование строительных конструкций
 - URL: https://bakhtiniada.ru/1815-5235/article/view/325802
 - DOI: https://doi.org/10.22363/1815-5235-2022-18-1-3-10
 - ID: 325802
 
Цитировать
Полный текст
Аннотация
Исследование устойчивости пластин при сдвиге под действием динамических нагрузок - одна из важных проблем строительной механики. Пластины находят широкое применение в строительстве, машино-, судо- и авиастроении. Представлена методика расчета пластин на выпучивание при сдвиге с учетом физической нелинейности материала. Рассматривается пластина под действием сдвигающей динамической нагрузки по краям. В основу расчета положены гипотезы Кирхгофа - Лява и гипотеза о нелинейно упругом теле. Материал пластины принимается физически нелинейным. Диаграмма деформирования аппроксимируется в виде кубического полинома. Прогиб точек пластины определяется в виде разложений Власова - Канторовича. Основные нелинейные дифференциальные уравнения выводятся с использованием энергетического метода. Для получения разрешающих уравнений выпучивания пластины используются уравнения Лагранжа. На основе разработанной методики выполнен расчет на устойчивость физически нелинейной квадратной пластины под действием сдвигающей динамической нагрузки. Края пластины опираются шарнирно. Конечная система нелинейных дифференциальных уравнений интегрируется численно методом Рунге - Кутта. По результатам расчетов построены графики зависимости относительной величины прогиба центральной точки пластины от динамического коэффициента Kд (с учетом и без учета физической нелинейности материала). Изучено влияние степени физической нелинейности материала и параметра скорости изменения сдвигающей нагрузки на критерии динамической устойчивости квадратной пластины.
Об авторах
Сергей Павлович Иванов
Поволжский государственный технологический университет; Марийский государственный университет
							Автор, ответственный за переписку.
							Email: IvanovSP@volgatech.net
				                	ORCID iD: 0000-0002-5206-9574
				                																			                								
доктор технических наук, профессор, заведующий кафедрой сопротивления материалов и прикладной механики, Поволжский государственный технологический университет; профессор кафедры электромеханики, Марийский государственный университет
Российская Федерация, 424000, Йошкар-Ола, пл. Ленина, д. 3; Российская Федерация, 424000, Йошкар-Ола, пл. Ленина, д. 1Список литературы
- Volmir A.S. Stability of deformable systems. Moscow: Nauka Publ.; 1967. (In Russ.)
 - Volmir A.S. Non-linear dynamic of plats and shells. Moscow: Nauka Publ.; 1972. (In Russ.)
 - Vlasov V.Z. Thin-walled spatial systems. Moscow: Gosstrojizdat Publ.; 1958. (In Russ.)
 - Lukash P.A. Fundamentals of nonlinear structural mechanics. Moscow: Strojizdat Publ.; 1978. (In Russ.)
 - Ivanov S.P., Ivanova A.S. Application of V.Z. Vlasov’s variational method to solving nonlinear problems of plate systems.Yoshkar-Ola: PGTU Publ.; 2015. (In Russ.)
 - Ivanov S.P., Ivanov O.G., Ivanova A.S. The stabilityof plates under the action of shearing loads. Structural Mechanics of Engineering Constructions and Buildings. 2017;(6):68–73. http://doi.org/10.22363/1815-5235-2017-6-68-73
 - Ivanov S.P., Ivanova A.S., Ivanov O.G. The stability of geometrically nonlinear plate systems under the action of dynamic loads. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(3):219–225. (In Russ.) http://doi.org/10.22363/1815-5235-2020-16-3-219-225
 - Trushin S.I., Zhuravleva T.A., Sysoeva E.V. Dynamic buckling of nonlinearly deformable reticulate plates from composite material with different lattice configurations. Scientific Review. 2016;(4):44–51. (In Russ.)
 - Kolmogorov G.L., Melnikova T.E., Azina E.O. Application of the Bubnov – Galerkin method for assessment of stability of non-isotropic plates. Structural Mechanics of Engineering Constructions and Buildings. 2017;(4):29–33. (In Russ.) http://doi.org/10.22363/1815-5235-2017-4-29-33
 - Manuylov G.A., Kositsyn S.B., Grudtsyna I.E. Numerical analysis of stability of the stiffened plates subjected aliquant critical loads. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(1):54–61. (In Russ.) http://doi.org/10.22363/1815-5235-2020-16-1-54-61
 - Manuylov G.A., Kositsyn S.B., Grudtsyna I.E. Geometrically nonlinear analysis of the stability of the stiffened plate taking into account the interaction of eigenforms of buckling. Structural Mechanics of Engineering Constructions and Buildings. 2021;17(1):3–18. (In Russ.) http://doi.org/10.22363/1815-5235-2021-17-1-3-18
 - Medvedskiy A.L., Martirosov M.I., Khomchenko A.V., Dedova D.V. Numerical analysis of the behavior of a three-layer honeycomb panel with interlayer defects under action of dynamic load. Structural Mechanics of Engineering Constructions and Buildings. 2021;17(4):357–365. (In Russ.) http://doi.org/10.22363/1815-5235-2021-17-4-357-365
 - Breslavsky I.D., Amabili M., Legrand M. Physically and geometrically non-linear vibrations of thin rectangular plates. International Journal of Non-Linear Mechanics. 2014;58:30–40. https://doi.org/10.1016/j.ijnonlinmec.2013.08.009
 - Vescovini R., Dozio L. Exact refined buckling solutions for laminated plates under uniaxial and biaxial loads. Composite Structures. 2015;127:356–368. https://doi.org/10.1080/15376494.2015.1059528
 - Nazarimofrad E., Barkhordar A. Buckling analysis of orthotropic rectangular plate resting on Pasternak elastic foundation under biaxial in-plane loading. Mechanics of Advanced Materials and Structures. 2016;23(10):1144–1148. https://doi.org/10.1080/15376494.2015.1059528
 - Srividhya S., Raghu P., Rajagopal A., Reddy J.N. Nonlocal nonlinear analysis of functionally graded plates using third-order shear deformation theory. International Journal of Engineering Science. 2018;125:1–22. https://doi.org/10.1016/j.ijengsci.2017.12.006
 - Ruocco E., Reddy J.N. A closed-form solution for buckling analysis of orthotropic Reddy plates and prismatic plate structures. Composites Part B: Engineering. 2019;169:258–273. https://doi.org/10.1016/j.compositesb.2019.03.015
 - Shiva K., Raghu P., Rajagopal A., Reddy J.N. Nonlocal buckling analysis of laminated composite plates considering surface stress effects. Composite Structures. 2019;226:111216. https://doi.org/10.1016/j.compstruct.2019.111216
 - Pagani A., Daneshkhah E., Xu X., Carrera E. Evaluation of geometrically nonlinear terms in the large-deflection and post-buckling analysis of isotropic rectangular plates. International Journal of Non-Linear Mechanics. 2020;121:103461. https://doi.org/10.1016/j.ijnonlinmec.2020.103461
 
Дополнительные файлы
				
			
						
					
						
						
						
									

