Учет геометрической нелинейности в конечно-элементных прочностных расчетах тонкостенных конструкций типа оболочек

Обложка

Цитировать

Полный текст

Аннотация

Актуальность. В настоящее время в связи с все более широким распространением большепролетных тонкостенных конструкций типа оболочек актуальным вопросом является разработка вычислительных алгоритмов по прочностному расчету такого рода объектов в геометрически нелинейной постановке. Несмотря на значительное количество публикаций по данной проблематике достаточно важным аспектом остается необходимость совершенствования конечно-элементных моделей таких оболочек, которые совмещали бы в себе относительную простоту разрешающих уравнений, учет сдвиговых деформаций, компактность формируемой матрицы жесткости, облегченную возможность моделирования и изменения граничных условий и т. д. Цели. Целью работы была разработка конечно-элементного алгоритма расчета тонкой оболочки с учетом сдвиговых деформаций в геометрически нелинейной постановке при использовании конечного элемента с ограниченным числом узловых варьируемых параметров. Методы . В качестве инструментов исследования выбран численный метод конечных элементов. Основные геометрические соотношения между приращениями деформаций и приращениями компонент вектора перемещения и компонент вектора угла наклона нормали получены в двух вариантах отсчета угла наклона нормали. Матрица жесткости и столбец узловых усилий четырехугольного конечного элемента на шаге нагружения получены минимизацией функционала Лагранжа. Результаты. На примере расчета жестко защемленной по краям цилиндрической панели, находящейся под действием сосредоточенной силы, показана эффективность разработанного алгоритма в геометрически нелинейной постановке с учетом деформации поперечного сдвига.

Об авторах

Юрий Васильевич Клочков

Волгоградский государственный аграрный университет

Автор, ответственный за переписку.
Email: klotchkov@bk.ru
SPIN-код: 9436-3693

д. т. н., профессор, заведующий кафедрой высшей математики

Российская Федерация, 400002, Волгоград, Университетский пр., 26

Анатолий Петрович Николаев

Волгоградский государственный аграрный университет

Email: klotchkov@bk.ru
SPIN-код: 2653-5484

д.т.н., профессор, профессор кафедры прикладной геодезии, природообустройства и водопользования

Российская Федерация, 400002, Волгоград, Университетский пр., 26

Тлек Рахметолович Ищанов

Волгоградский государственный аграрный университет

Email: klotchkov@bk.ru
SPIN-код: 1556-1368

к.т.н., старший преподаватель кафедры высшей математики

Российская Федерация, 400002, Волгоград, Университетский пр., 26

Александр Сергеевич Андреев

Волгоградский государственный аграрный университет

Email: klotchkov@bk.ru
SPIN-код: 7568-5011

старший преподаватель кафедры высшей математики

Российская Федерация, 400002, Волгоград, Университетский пр., 26

Михаил Юрьевич Клочков

Московский государственный университет имени М.В. Ломоносова

Email: klotchkov@bk.ru
SPIN-код: 2767-3955

студент 4-го курса физического факультета

Российская Федерация, 119991, Москва, Ленинские горы, 1

Список литературы

  1. Krivoshapko S.N., Gbaguidi-Aisse G.L. Geometry, static, vibration and bucking analysis and applications to thin elliptic paraboloid shells. The Open Construction and Building Technology Journal. 2016;(10):3–28.
  2. Krylova Ye.Yu., Papkova I.V., Saltykova O.A., Sinichkina A.O., Krys'ko V.A. Mathematical model of vibrations of the cylindrical shells, which are dimensionally dependent with the net structure, taking into account the Kirchhoff – Love hypotheses. Nonlinear World. 2018;16(4): 17–28. (In Russ.)
  3. Pyatikrestovskiy K.P., Travush V.I. Nonlinear Method Programming for Calculations of Statically Indeterminate Wooden Structures and Software Systems’ Communication to Development of Improved Design Standards. Academia. Architecture and construction. 2015;(2): 115–119. (In Russ.)
  4. Kim A.Yu., Polnikov S.V. Comparing the experi- mental and computational investigations of longspan air lentiform structure. Nauchnoe obozrenie [Scientific review]. 2016;(15):36–41. (In Russ.)
  5. Khayrullin F.S., Sakhbiev O.M. A method of determination of stress-strain state of 3D structures of complex form. Structural Mechanics of Engineering Constructions and Buildings. 2016;(1):36–42. (In Russ.)
  6. Kozlov V.A. Stress and strain of multiply connected prismatic structures, mounted on a skewed crosssection. Russian Journal of Building Construction and Architecture. 2015;4(40):11–17. (In Russ.)
  7. Kayumov R.A., Shakirzyanov F.R., Gavryushin S.S. Modeling of the deformation process and evaluation of the bearing capacity of a thin-walled structure in the ground. Proceedings of Higher Educational Institutions. Маchine Building. 2014;(6):20–24. (In Russ.)
  8. Ignat’ev A.V., Ignat’ev V.A., Gazmatova E.A. Calculation of thin plates by the method of finite elements in the form of the classical mixed method with the exception of the move- ment of finite elements as a rigid whole. News of Higher Educational Institutions. Building. 2018;3(711):5–13. (In Russ.)
  9. Golovanov A.I., Tyuleneva O.N., Shigabutdinov A.F. Metod konechnih elementov v statike i dinamike tonko- stennyh konstruktsiy [The finite element method in statics and dynamics of thin-walled structures]. Moscow: Fizmatlit Publ; 2006. (In Russ.)
  10. Zheleznov L.P., Kabanov V.V., Boiko D.V. Nelineynoye deformirovaniye i ustoychivost' diskretno podkreplennykh ellipticheskikh tsilindricheskikh kompozitnykh obolochek pri kruchenii i vnutrennem davlenii [Nonlinear Deformation and Stability of Discrete-Reinforced Elliptical Cylindrical Composite Shells under Torsion and Internal Pressure]. Izv. VUZov. Aviatsionnaya tekhnika. 2018;(2):27–34. (In Russ.)
  11. Tyukalov Yu.Ya. Finite element models in stresses for bending plates. Magazine of Civil Engineering. 2018; 6(82):170–190. doi: 10.18720/MCE.82.16.
  12. Agapov V.P., Aydemirov K.R. Calculation of Trusses by Finite-Element Method with Due Regard for Geometric Non-Linearity. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and civil engineering]. 2016;(11):4–7. (In Russ.)
  13. Belostotskiy A.M., Akimov P.A., Aul A.A., Dmitriyev D.S., Dyadchenko Yu.N., Nagibovich A.I., Ostrovskiy K.I., Pavlov A.S. Analysis of Mechanical Safetyof Stadiums for the World Cup 2018. Academia. Architecture and construction. 2018;(3):118–129. (In Russ.)
  14. Nguyen N., Waas A. Nonlinear, finite deformation, finite element analysise. Z. Angew. Math. Phys. 2016; 9(67):351–352. https://doi.org/10.1007/s00033-016-0623-5
  15. Lei Z., Gillot F., Jezequel L. Developments of the mixed grid isogeometric Reissner – Mindlin shell: serendipity basis and modified reduced quadrature. Int. J. Mech. 2015;(54):105–119.
  16. Hanslo P., Larson M.G., Larson F. Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem. Comput. Mech. 2015;56(1):87–95.
  17. Yamashita H., Valkeapaa A.I., Jayakumar P., Syqiyama H. Continuum mechanics based bilinear shear deformable shell element using absolute nodal coordinate formulation. Trans. ASME. J. Comput. And Nonlinear Dyn. 2015;10(5):051012,1–051012,9.
  18. Ren H. Fast and robust full-guad-rature triangular elements for thin plates/shells, with large deformations and large rotations. Trans. ASME. J. Comput. And Nonlinear Dyn. 2015;10 (5):051018/1–051018/13.
  19. Sartorato M., Medeiros R., Tita V. A finite element formulation for smart piezollectric composite shells: Mathematical formulation, computational analysis and experimental evaluation. Compos. Struct. 2015;127(1):185–198.
  20. Lalin V., Rybakov V., Sergey A. The Finite Elements for Design of Frame of Thin-Walled Beams. Applied Mechanics and Materials. 2014;578–579:858–863. https://doi.org/10.4028/www.scientific.net/amm.578-579.858
  21. Rikards R.B. Metod konechnykh elementov v teorii obolochek i plastin [Finite element method in the theory of shells and plates]. Riga: Zinatne Publ.; 1988. (In Russ.)
  22. Sedov L.I. Mehanika sploshnoi sredi [Continuum mechanics]. Moscow: Nauka Publ.; 1976. (In Russ.)
  23. Novozhilov V.V. Teoriya tonkikh obolochek [Theory of thin shells]. Saint Petersburg: Publishing House of Saint Petersburg University; 2010. (In Russ.)
  24. Papenhausen J. Eine energiegrechte, incrementelle for mulierung der geometrisch nichtlinearen Theorie elastischer Kontinua und ihre numerische Behandlung mit Hilfe finite Elemente. Techn. – Wiss. Mitt. Jnst. Konstr. Jngenierlau Ruhr. Univ. Bochum. 1975;13(III):133.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».