МОДЕЛИРОВАНИЕ ТРЕЩИНООБРАЗОВАНИЯ В ВОЛОКНИСТОМ КОМПОЗИТЕ ПРИ ИЗГИБЕ
- Авторы: Гасанов Ш.Г.1
-
Учреждения:
- Азербайджанский технический университет
- Выпуск: Том 14, № 3 (2018)
- Страницы: 248-257
- Раздел: Теория упругости
- URL: https://bakhtiniada.ru/1815-5235/article/view/346323
- DOI: https://doi.org/10.22363/1815-5235-2018-14-3-248-257
- ID: 346323
Цитировать
Полный текст
Аннотация
Проектирование армированного волокнами композита минимальной материалоемкости при гарантированной надежности и долговечности требует учета случаев, когда в связующем могут возникать трещины. Чтобы знать предельные изгибающие нагрузки, при которых в связующем произойдет образование трещин, необходимо проводить предельный анализ композита. На основе предложенной расчетной модели, учитывающей в волокнистом композите наличие повреждений (зон ослабленных межчастичных связей материала), разработан метод расчета параметров композита, при которых появляются трещины. Рассмотрена тонкая пластина из упругой изотропной среды (матрицы) и распределенных в ней включений (волокон) из другого упругого материала при изгибе. Считается, что при нагружении происходит зарождение трещин и разрушение композита. Для прогнозирования появления трещин в волокнистом композите при изгибе в зависимости от геометрических и механических характеристик связующего и волокна построена замкнутая система нелинейных алгебраических уравнений. Сформулирован критерий зарождения трещин в композите при действии изгибающих нагрузок. Размер предельных минимальных зон ослабленных межчастичных связей материала, при которых происходит трещинообразование, рекомендуется рассматривать как проектную характеристику материала связующего.
Ключевые слова
Об авторах
Шахин Гумбат Гасанов
Азербайджанский технический университет
Автор, ответственный за переписку.
Email: hssh3883@gmail.com
доктор технических наук, профессор кафедры организации автомобильных перевозок и дорожного движения, Азербайджанский технический университет. Научные интересы: прочность дорожных покрытий, механика разрушения конструкций и сооружений
пр. Г. Джавида, д. 25, Баку, Азербайджан, AZ 1073Список литературы
- Mirsalimov V.M., Bakhyshov F.A. (2005). Inverse problem of the fracture mechanics of a composite perforated plate during bending. Journal of Machinery Manufacture and Reliability, 34(5), 28–37.
- Li S., Thouless M.D., Waas A.M., Schroeder J.A., Zavattieri P.D. (2005). Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced polymer–matrix composite. Composites Science and Technology, 65, 537–549.
- Bakhyshov F.A., Mirsalimov V.M. (2006). Inverse doubly periodic problem of the theory of bending of a plate with elastic inclusions. Journal of Applied Mechanics and Technical Physics, 47(4), 588–595.
- Lü N.C., Cheng Y.H., Si H.L., Cheng J. (2007). Dynamics of asymmetrical crack propagation in composite materials. Theoretical and Applied Fracture Mechanics, 47(3), 260–273.
- Mirsalimov V.M. (2007). Optimal design of a compound plate weakened by a periodic crack system. Mechanics of Solids, 42(2), 231–240.
- Savastano Jr H., Santos S.F., Radonjic M., Soboyejo W.O. (2009). Fracture and fatigue of natural fiber-reinforced cementitious composites. Cement and Concrete Composites, 31, 232–243.
- Lü N., Li X., Cheng Y., Cheng J. (2011). An asymmetrical dynamic crack model of bridging fiber pull-out of composite materials. Fibers and Polymers, 12(1), 79–88.
- Ko Y.F., Ju J.W. (2013). Effects of fiber cracking on elastoplastic-damage behavior of fiber-reinforced metal matrix composites. International Journal of Damage Mechanics, 22, 48–67.
- Greco F., Leonetti L., Lonetti P. A two-scale failure analysis of composite materials in presence of fiber/ matrix crack initiation and propagation. Composite Structures, 2013, 95, 582–597.
- Mirsalimov V.M., Hasanov F.F. (2014). Interaction between periodic system of rigid inclusions and rectilinear cohesive cracks in an isotropic medium under transverse shear. Acta Polytechnica Hungarica, 11(5), 161–176.
- Hasanov F.F. (2014). Fracture of a composite reinforced by unidirectional fibers. Mechanics of Composite Materials, 50(5), 593–602.
- Mirsalimov V.M., Hasanov F.F. (2014). Interaction of a periodic system of foreign elastic inclusions whose surface is uniformly covered with a homogeneous cylindrical film and two systems of straight line cracks with end zones. Journal of Machinery Manufacture and Reliability, 43(5), 408–415.
- Hao W., Yao X., Ma Y., Yuan Y. (2015). Experimental study on interaction between matrix crack and fiber bundles using optical caustic method. Engineering Fracture Mechanics, 134, 354–367.
- Hasanov F.F. (2014). Modelling of crack nucleation in the fibre of composite reinforced with unidirectional fibres under shear. Journal of Mechanical Engineering, 17(2), 17–25. (In Russ.)
- Hasanov F.F. (2014). Nucleation of cracks in isotropic medium with periodic system of the circular holes filled with rigid inclusions at longitudinal shear. Structural Mechanics of Engineering Constructions and Buildings, (3), 44–50. (In Russ.)
- Kayumov R.A., Lukankin S.A., Paimushin V.N., Kholmogorov S.A. (2015). Identification of mechanical properties of fiber-reinforced composites. Proceedings of Kazan University. Physics and Mathematics Series, 157(4), 112–132. (In Russ.)
- Mirsalimov V.M., Hasanov F.F. (2015). Interaction of periodic system heterogeneous inclusions and cohesive cracks under longitudinal shear. Structural Mechanics of Engineering Constructions and Buildings, (2), 18–28. (In Russ.)
- Polilov A.N. (2014). Mechanisms of stress concentration reduction in fiber composites. Journal of Applied Mechanics and Technical Physics, 55(1), 154–163.
- Mirsalimov V.M., Askarov V.A. (2016). Minimization of fracture parameters of a composite at bending. Mechanics of Composite Materials, 51(6), 737–744.
- Mokhtari A., Ouali M.O., Tala-Ighil N. (2015). Damage modelling in thermoplastic composites reinforced with natural fibres under compressive loading. International Journal of Damage Mechanics, 2015, 24, 1239–1260.
- Mirsalimov V.M., Askarov V.A. (2016). Minimization of stress intensity factors for composite reinforced by unidirectional fibers at bending. I. Yakovlev Chuvash State Pedagogical University Bulletin. Series: Mechanics of a Limit State, 3(29), 105–116. (In Russ.)
- Mirsalimov V.M., Hasanov F.F. (2015). Nucleation of cracks in an isotropic medium with periodic system of rigid inclusions under transverse shear. Acta Mechanica, 226, 385–395.
- Krūmiņš J., Zesers A. (2015). Experimental investigation of the fracture of hybrid-fiber-reinforced concrete. Mechanics of Composite Materials, 51(1), 25–32.
- Takeda T., Narita F. (2017). Fracture behavior and crack sensing capability of bonded carbon fiber composite joints with carbon nanotube-based polymer adhesive layer under Mode I loading. Composites Science and Technology, 146, 26–33.
- Ju J.W., Wu Y. (2016). Stochastic micromechanical damage modeling of progressive fiber breakage for longitudinal fiber-reinforced composites. International Journal of Damage Mechanics, 25, 203–227.
- Bakhshan H., Afrouzian A., Ahmadi H., Taghavimehr M. (2017). Progressive failure analysis of fiberreinforced laminated composites containing a hole. International Journal of Damage Mechanics, https://doi.org/ 10.1177/1056789517715088.
- Mirsalimov V.M. (2018). Minimization of stress state of compound body weakened with cracks. Mechanics of Advanced Materials and Structures, https://doi.org/ 10.1080/15376494.2018.1444220.
- Mirsalimov V.M. (1987). Neodnomernye Uprugoplasticheskie Zadachi [Non-one-dimensional Elastoplastic Problems]. Moscow, Nauka, 256. (In Russ.)
- Panasyuk V.V. (1991). Mehanika Kvazihrupkogo Razrushenija Materialov [Mechanics of Quasibrittle Fracture of Materials]. Kiev, Naukova Dumka, 416. (In Russ.)
- Rusinko A., Rusinko K. (2011). Plasticity and Creep of Metals. Berlin; Springer, 434.
- Mirsalimov V.M. (2005). Nucleation of crack type defect in the hub of a contact pair. Matematicheskoe Modelirovanie, 17(2), 35–45.
- Muskhelishvili N.I. (1977). Some Basic Problem of Mathematical Theory of Elasticity. Amsterdam: Kluwer Academic, 707.
- Panasyuk V.V., Savruk M.P., Datsyshyn A.P. (1976). Raspredelenie Naprjazhenij okolo Treshhin v Plastinah i Obolochkah [The Stress Distribution around Cracks in Plates and Shells]. Kiev, Naukova Dumka, 443. (In Russ.)
- Savruk M.P. (1981). Dvumernye Zadachi Uprugosti dlja Tel s Treshhinami [Two-dimensional Problem of Elasticity for Bodies with Cracks]. Kiev, Naukova Dumka, 324. (In Russ.)
Дополнительные файлы


