Macroeconomic Analysis of the Impact of Economic Complexity on Income Inequality: Does Institutional Quality Matter?

封面

如何引用文章

全文:

详细

This paper sheds light on the relationship between economic complexity and income inequality considering the role of institutions based on data over the period 1996–2020 across 52 developed and developing countries from Europe and Cent ral Asia, and the Middle East and North Africa. Our contribution to the existing li terature is twofold. First, we analyse the relationship between economic complexity and income inequality considering the institutional dimension and studying various components of institutions. Second, we take into account the non-linear form of relationship between economic complexity and income inequality, as well as hete rogeneity of this relationship across groups of countries. We address endogeneity by employing a fixed effect two stage least squares model with instrumental variab les. Our results demonstrate that for the overall sample of countries, an increase in a country’s economic complexity results in higher level of income inequality. However, the impact of economic complexity on income inequality is heterogeneous across groups of countries, with a U-inverted relationship in countries of Euro pe and Central Asia. Moreover, economic complexity combined with the high level of institutional quality can reduce income inequality. Therefore, we conclude that the improvement of all components of institutional structure will facilitate a decrease in income disparities. Our analysis shows that better educational level leads to lower income inequality. Besides, our findings emphasise the need for policy ensuring more equal gains from economic development and international trade.

作者简介

Natalia Davidson

Ural Federal University

Email: natalya.davidson@gmail.com

Associate Professor, Graduate School of Economics and Management

俄罗斯联邦, Ekaterinburg

Ekaterina Magon

Ural Federal University

Email: Volkova2016consta@gmail.com

Student, Graduate School of Economics and Management

俄罗斯联邦, Ekaterinburg

Oleg Mariev

Ural Federal University

编辑信件的主要联系方式.
Email: o.s.mariev@urfu.ru

Associate Professor, PhD, Graduate School of Economics and Management

俄罗斯联邦, Ekaterinburg

参考

  1. Acemoglu D., Egorov G., Sonin K. (2012) Dynamics and Stability of Constitutions, Coalitions, and Clubs. The American Economic Review, 102, 4, pp. 1446–1476. http://dx.doi.org/10.1257/aer.102.4.1446
  2. Acemoglu D., Johnson S., Robinson J.A. (2005) Institutions As a Fundamental Cause of Long-Run Growth. Handbook of Economic Growth 1(A) (eds. P. Aghion, S.N. Durlauf). Elsevier., pp 385–472. https://doi.org/10.1016/S1574-0684(05)01006-3
  3. Adão R., Carrillo P., Costinot A., Donaldson D., Pomeranz D. (2022) Imports, Exports, and Earnings Inequality: Measures of Exposure and Estimates of Incidence. The Quarterly Journal of Economics, 137, 3, pp. 1553–1614. https://doi.org/10.1093/qje/qjac012
  4. Alesina A., Rodrik D. (1994) Distributive Politics and Economic Growth. The Quarterly Journal of Economics, 109, 2, pp. 465–490. https://doi.org/10.2307/2118470
  5. Amarante V., Lanzilotta B., Torres J. (2023) Inequality and Productive Structure: New Evidence at the world Level. UNU-WIDER Working Paper, 2023/9. https://doi.org/10.35188/UNU-WIDER/2023/317-8
  6. Balland P.-A., Broekel T., Diodato D., Giuliani E., Hausmann R., O'Clery N., Rigby D. (2022) Reprint of the New Paradigm of Economic Complexity. Research Policy, 51, 8, pp. 104568. https://doi.org/10.1016/j.respol.2022.104568
  7. Baum C.F., Schaffer M.E., Stillman S. (2003) Instrumental Variables and GMM: Estimation and Testing. The Stata Journal, 3, 1, pp. 1–31. https://doi.org/10.1177/1536867X0300300101
  8. Berg A.G., Ostry J.D. (2013) Inequality and Unsustainable Growth: Two Sides of the Same Coin? In-ternational Organization Research Journal, 8, 4, pp. 77–99. http://dx.doi.org/10. 1057/s41308-017-0030-8
  9. Bergh A., Nilsson Th. (2010) Do Liberalization and Globalization Increase Income Inequality? Eu-ropean Journal of Political Economy, 26, 4, pp. 488–505. https://doi.org/10.1016/j.ejpoleco.2010.03.002
  10. Bernal P., Carree M., Lokshin B. (2022) Knowledge Spillovers, R&D Partnerships and Innovation Performance. Technovation, 115, pp. 102456. https://doi.org/10.1016/j.technovation.2022.102456
  11. Bollen K.A. (1989) Structural Equations with Latent Variables. New York: John Wiley and Sons, Inc. https://doi.org/10.1002/9781118619179
  12. Bustos S., Yıldırım M.A. (2022) Production Ability and Economic Growth. Research Policy, 51, 8, pp. 104153. https://doi.org/10.1016/j.respol.2020.104153
  13. Caldarelli G., Cristelli M., Gabrielli A., Pietronero L., Scala A., Tacchella A. (2012) A Network Anal-ysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy. PLoS One, 7, 10. https://doi.org/10.1371/journal.pone.0047278
  14. Carvalho L., Rezai A. (2014) Personal Income Inequality and Aggregate Demand. Working Paper, 2014–23. Department of Economics, University of São Paulo. São Paulo.
  15. Chancel L., Piketty T., Saez E., Zucman G. et al. (2022) World Inequality Report. World Inequality Lab.
  16. Chávez J.C., Mosqueda M.T., Gómez-Zaldívar M. (2017) Economic Complexity and Regional Growth Performance: Evidence from the Mexican Economy. The Review of Regional Studies, 47, 2, pp. 201–219. https://doi.org/10.52324/001c.8023
  17. Chu L.K., Hoang D.P. (2020) How Does Economic Complexity Influence Income Inequality? New Evidence from International Data. Economic Analysis and Policy, 68(C), pp. 44–57. https://doi.org/10.1016/j.eap.2020.08.004
  18. Cingano F. (2014) Trends in Income Inequality and its Impact on Economic Growth. OECD Social, Employment and Migration Working Papers, 163. https://doi.org/10.1787/5jxrjncwxv6j-en
  19. Constantine C., Khemraj T. (2019) Geography, Economic Structures And Institutions: A Synthesis. Structural Change and Economic Dynamics, 51(C), pp. 371–379. https://doi.org/10.1016/j.strueco.2019.01.001
  20. Dorn D., Levell P. (2021) Trade and Inequality in Europe and the US. IZA Discussion Papers 14914, Institute of Labor Economics (IZA).
  21. Feldman M., Guy F., Iammarino S. (2021) Regional Income Disparities, Monopoly and Finance. Cambridge Journal of Regions, Economy and Society, 14, 1, pp. 25–49. https://doi.org/10.1093/cjres/rsaa024
  22. Foster E.M., McLanahan S. (1996) An Illustration of the Use of Instrumental Variables: Do Neigh-borhood Conditions Affect a Young Person's Chance of Finishing High School? Psychological Methods, 1, 3, pp. 249–260. https://doi.org/10.1037/1082-989X.1.3.249
  23. Gao X., Rai V. (2023) Knowledge Acquisition and Innovation Quality: The Moderating Role of Geo-graphical Characteristics of Technology. Technovation, 125, pp. 102766. https://doi.org/10.1016/j.technovation.2023.102766
  24. Gómez‐Zaldívar M., Osorio‐Caballero M.I., Saucedo‐Acosta E.J. (2022) Income Inequality and Eco-nomic Complexity: Evidence from Mexican States. Regional Science Policy & Practice, 6, 14, pp. 344–363. https://doi.org/10.1111/rsp3.12580
  25. Hartmann D. (2014) Economic Complexity and Human Development: How Economic Diversifica-tion and Social Networks Affect Human Agency and Welfare. New York: Routledge.
  26. Hartmann D., Guevara M.R., Jara-Figueroa C., Aristarán M., Hidalgo C.A. (2017) Linking Economic Complexity, Institutions, and Income Inequality. World Development, 93, pp. 75–93. https://doi.org/10.1016/j.worlddev.2016.12.020
  27. Hausmann R., Hidlago C.A., Bustos S., Coscia M., Chung S., Jimenez J., Simoes A., Yildirim M.A. (2011) The Atlas of Economic Complexity: Mapping Paths to Prosperity. Massachusetts: Puritan Press.
  28. Hidalgo C.A., Hausmann R. (2009) The Building Blocks of Economic Complexity. Proceedings of the National Academy of Science of the United States of America, 106, 26, pp. 10570–5. https://doi.org/10.1073/pnas.0900943106
  29. Kemp-Benedict E. (2014) An Interpretation and Critique of the Method of Reflections. MPRA Pa-per, 60705, pp. 1–16.
  30. Kumhof M., Rancière R., Winant P. (2015) Inequality, Leverage, and Crises. The American Econom-ic Review, 105, 3, pp. 1217–1245. http://dx.doi.org/10.1257/aer.20110683
  31. Kuznets S. (1955) Economic Growth and Income Inequality. The American Economic Review, 45, 1, pp. 1–28.
  32. Lakner C., Milanovic B. (2016) Global Income Distribution: From the Fall of the Berlin Wall to the Great Recession. The World Economic Review, 30, 2, pp. 203–232.
  33. Le Caous E., Huarng F. (2020) Economic Complexity and the Mediating Effects of Income Inequali-ty: Reaching Sustainable Development in Developing Countries. Sustainability, 12, 5, pp. 2089. https://doi.org/10.3390/su12052089
  34. Lee C.C., Wang E.Z. (2021) Economic Complexity and Income Inequality: Does Country Risk Mat-ter? Social Indicators Research, 154, pp. 35–60. https://doi.org/10.1007/s11205-020-02543-0
  35. Lee K.K., Vu T.V. (2020) Economic Complexity, Human Capital and Income Inequality: A Cross-Country Analysis. The Japanese Economic Review, 71, 4, pp. 695–718. https://doi.org/10.1007/s42973-019-00026-7
  36. Lessmann Ch., Seidel A. (2017) Regional Inequality, Convergence, and its Determinants – A View from outer Space. European Economic Review, 92(C), pp. 110–132. https://doi.org/10.1016/j.euroecorev.2016.11.009
  37. Malla M.H., Pathranarakul P. (2022) Fiscal Policy and Income Inequality: The Critical Role of Insti-tutional Capacity. Economies, 10, 5, pp. 115. https://doi.org/10.3390/economies10050115
  38. Maydeu-Olivares A., Shi D., Fairchild A.J. (2020) Estimating Causal Effects in Linear Regression Mo dels with Observational Data: The Instrumental Variables Regression Model. Psychological Methods, 25, 2, pp. 243–258. https://doi.org/10.1037/met0000226
  39. Mihályi P., Szelényi I. (2019) The Place of Rent-Seeking and Corruption in Varieties of Capitalism Models. Market Liberalism and Economic Patriotism in the Capitalist World-System (eds. T. Gerőcs, M. Szanyi) International Political Economy Series, Palgrave Macmillan, Cham, pp. 67–97. https://doi.org/10.1007/978-3-030-05186-0_5
  40. Morais B.M., Swart J., Jordaan J.A. (2021) Economic Complexity and Inequality: Does Regional Productive Structure Affect Income Inequality in Brazilian States? Sustainability, 13, 2, pp. 1–23. https://doi.org/10.3390/su13021006
  41. Nguyen C.P., Nguyen B.Q., Le Tran D.T. (2023) Economic Complexity and Income Inequality: New Evidence of a Nonlinear Effect. Social Science Quarterly, 104, 4, pp. 829–868. https://doi.org/10.1111/ssqu.13281
  42. Nolan B., Richiardi M.G., Valenzuela L. (2019) The Drivers of Income Inequality in Rich Countries. Journal of Economic Surveys, 33, 4, pp. 1285–1324.
  43. Ouechtati I. (2023) Financial Inclusion, Institutional Quality, and Inequality: An Empirical Analy-sis. Journal of the Knowledge Economy, 14, 2, pp. 620–644. https://doi.org/10.1007/s13132-022-00909-y
  44. Oyèkọ́lá Ọ. (2023) Life May be unfair, but Do Democracies Make it Any Less Burdensome? The Journal of Economic Inequality. https://doi.org/10.1007/s10888-023-09607-4
  45. Pham M.H., Truong H.D.H., Hoang D.P. (2023) Economic Complexity, Shadow Economy, and In-come Inequality: Fresh Evidence from Panel Data. Research Square. https://doi.org/10.21203/rs.3.rs-2452093/v1
  46. Piketty T., Goldhammer A. (2014) Capital in the Twenty-First Century. Harvard University Press.
  47. Rajan R.G. (2010) Fault Lines: How Hidden Fractures Still Threaten the world Economy. Princeton: Princeton University Press.
  48. Rikap C., Lundvall B.-A. (2020) Big Tech, Knowledge Predation and the Implications for Develop-ment. Innovation and Development, 12, 3, pp. 389–416. https://doi.org/10.1080/2157930X.2020.1855825
  49. Sbardella A., Pugliese E., Pietronero L. (2017) Economic Development and Wage Inequality: A Complex System Analysis. PLOS ONE, 12, 9, pp. e0182774. https://doi.org/10.1371/journal.pone.0182774
  50. Sepehrdoust H., Tartar M., Gholizadeh A. (2021) Economic Complexity, Scientific Productivity and Income Inequality in Developing Economies. Economics of Transition and Institutional Change, 30, 4, pp. 737–752. https://doi.org/10.1111/ecot.12309
  51. Schaffer M.E. (2010) xtivreg2: Stata Module to Perform Extended IV/2SLS, GMM and AC/HAC, LIML and k-class Regression for Panel Data Models. http://ideas.repec.org/c/boc/bocode/s456501.html
  52. Solt F. (2020) Measuring Income Inequality Across Countries and Over Time: The Standardized World Income Inequality Database. Social Science Quarterly, 101(3), 1183–1199. https://doi.org/10.1111/SSQU.12795
  53. Stolper W.F., Samuelson P.A. (1941) Protection and Real Wages. The Review of Economic Studies, 9, 1, pp. 58–73. https://doi.org/10.2307/2967638
  54. Tacchella A., Cristelli M., Caldarelli G., Gabrielli A., Pietronero L. (2012) A New Metrics for Coun-tries’ Fitness and Products’ Complexity. Scientific Reports, 2, 1, pp. 723. https://doi.org/10.1038/srep00723
  55. Topuz S.G. (2022) The Relationship between Income Inequality and Economic Growth: Are Trans mission Channels Effective? Social Indicators Research, 162, pp. 1177–1231. https://doi.org/10.1007/s11205-022-02882-0
  56. Violante G.L. (2008) Skill-Biased Technical Change. The New Palgrave Dictionary of Economics. London: Palgrave Macmillan. https://doi.org/10.1057/978-1-349-95121-5_2388-1
  57. Vu T. (2022) Does Institutional Quality Foster Economic Complexity? The Fundamental Drivers of Productive Capabilities. Empirical Economics, 63, pp. 1571–1604. https://doi.org/10.1007/s00181-021-02175-4
  58. World Bank (2022) Worldwide Governance Indicators. https://info.worldbank.org/governance/wgi/
  59. Zhu S., Yu C., He C. (2020) Export Structures, Income Inequality and Urban-Rural Divide in China. Applied Geography, 115, pp. 102150. https://doi.org/10.1016/j.apgeog.2020.102150
  60. Zhu Ch. (2022) Conceptualising and Evaluating Inclusive Economic Development: A Productivity Perspective. Development Studies Research, 9, 1, pp. 219–229. https://doi.org/10.1080/21665095.2022.2112729

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».