Оценка влияния тонкой пленки воды на частотные зависимости S-параметров линии передачи при положительной и отрицательной температурах

Обложка

Цитировать

Полный текст

Аннотация

Актуальность. Обеспечение надежной и бесперебойной радиосвязи критически важно при изменении климатических условий ее эксплуатации. Совместное воздействие температуры и влажности воздуха может привести к изменению электрических характеристик приемопередающих устройств и тем самым нарушить канал связи. В сложных климатических условиях эксплуатации, за счет постоянного изменения температуры на поверхности входящих в состав печатных плат (ПП) может образовываться конденсат, влияющий на работоспособность всего устройства. В этой связи электрические характеристики изменяются, что необходимо учитывать при проектировании критичной радиоэлектронной аппаратуры. Следовательно, целесообразна оценка климатических воздействий на линии передачи, расположенные на печатных платах в широком диапазоне частот, что требует разработки новых моделей и методик.Цель работы: оценить влияние температуры тонкой пленки воды на поверхности микрополосковой линии передачи (МЛП) на ее частотные зависимости S-параметров с помощью методов конечных элементов и лабораторных экспериментов.Результаты. Представлена методика учета воздействия температуры и влажности окружающей среды на электрические характеристики МЛП, позволяющая оценить изменение S-параметров линии в широких диапазонах частот, температур и влажности воздуха, а также химического состава окружающей среды. Измерены S-параметры воды в контейнере, размещенном внутри коаксиальной камеры, в диапазонах частот и температур от 10 МГц до 12 ГГц и от ‒50 до 100 ℃, соответственно. Используя представленную модель, вычислены частотные зависимости электропроводности воды при разных температурах. Показано, что при положительной температуре электропроводность может достигать 6,5 См/м, а при отрицательной –1,3 См/м. Разработанная методика позволяет оценить влияние различной электропроводности воды на S-параметры МЛП. Показано влияние толщины слоя воды и льда на S-параметры МЛП. Выявлено, что модели, описывающие электропроводность воды, оказывают отличное влияние на электрические параметры линии передачи. Новизна: представлена методика учета влияния температуры и влажности окружающей среды на S-параметры линии передачи, отличающаяся использованием модели электропроводности воды на основе вносимых потерь, вычисленных из измеренных S-параметров коаксиальной камеры с водой в контейнере при изменении ее температуры. Практическая значимость представленной модели и методики позволяет оценить S-параметры линии в широких диапазонах частот, температур и влажности воздуха, а также химического состава окружающей среды.

Об авторах

В. Н. Невежин

Томский государственный университет систем управления и радиоэлектроники

Email: vitalayzerman@mail.ru
ORCID iD: 0000-0002-2257-7690
SPIN-код: 3418-7472

М. Е. Комнатнов

Томский государственный университет систем управления и радиоэлектроники

Email: maxmek@mail.ru
ORCID iD: 0000-0002-6463-2889
SPIN-код: 6187-9870

Список литературы

  1. Zhou Y., Lang R.H., Dinnat E.P., Le Vine David M. Seawater Debye Model Function at L-Band and its Impact on Salinity Retrieval from Aquarius Satellite Data // IEEE Transactions on Geoscience and Remote Sensing. 2021. Vol. 59. Iss. 10. PP. 8103‒8116. doi: 10.1109/TGRS.2020.3045771
  2. Onibonoje M.O. A distributed control wireless system for environmental humidity determination based on adaptive controller model // Scientific African. 2021. Vol. 13. PP. 1‒8. doi: 10.1016/j.sciaf.2021.e00922
  3. Conseil-Gudla H., Staliulionis Z., Jellesen M.S., Jabbari M., Hattel J.H., Ambat R. Humidity Buildup in Electronic Enclosures Exposed to Constant Conditions // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2017. Vol. 7. Iss. 3. PP. 412‒423. doi: 10.1109/TCPMT.2017.2655447
  4. Ambat R., Conseil-Gudla H. Improving intrinsic corrosion reliability of printed circuit board assembly // Proceedings of the 18th Electronics Packaging Technology Conference (EPTC, Singapore, 30 November ‒ 03 December 2016). IEEE, 2016. PP. 540‒544. doi: 10.1109/EPTC.2016.7861538
  5. Суппа М., Кузнецова Т. Методика исследования и испытаний влагозащитных покрытий, паяльных паст и технологических процессов // Технологии в электронной промышленности. 2014. № 7(75). С. 78‒82. EDN:SZSYXB
  6. Jacobsen J.B., Krog J.P., Rimestad L., Riis A., Holm A.H. Climatic challenges and product level solutions for electronics in demanding applications // IMAPS Nordic. 2012. Vol. 536. Iss. 6986. PP. 1‒8.
  7. Wang H., Liserre M., Blaabjerg F. Toward Reliable Power Electronics: Challenges, Design Tools, and Opportunities // IEEE Industrial Electronics Magazine. 2013. Vol. 7. Iss. 2. PP. 17‒26. doi: 10.1109/MIE.2013.2252958
  8. Artemov V. The Dielectric Properties and Dynamic Structure of Water and Ice // The Electrodynamics of Water and Ice. Springer Series in Chemical Physics. Cham: Springer, 2021. Vol. 124. PP. 131‒169. doi: 10.1007/978-3-030-72424-5_4
  9. Zhao L., Ma K., Yang Z. Changes of Water Hydrogen Bond Network with Different Externalities // International Journal of Molecular Sciences. 2015. Vol. 16. Iss. 4. PP. 8454‒8489. doi: 10.3390/ijms16048454
  10. Kozak R., Khorsand K., Zarifi T., Golovin K., Zarifi M.H. Patch antenna sensor for wireless ice and frost detection // Scientific Reports. 2021. Vol. 11. Iss. 1. PP. 1‒11. doi: 10.1038/s41598-021-93082-2
  11. Schoenlinner B., Steinmayer M., Schulte B. Cabin ceiling-integrated broadband antenna for wireless services in passenger aircraft // Proceedings of the 42nd European Microwave Conference (Amsterdam, Netherlands, 29 October ‒ 01 November 2012). IEEE, 2012. PP. 846‒849. doi: 10.23919/EuMC.2012.6459217
  12. Ley S., Schilling S., Fiser O., Vrba J., Sachs J., Helbig M. Ultra-wideband Temperature Dependent Dielectric Spectroscopy of Porcine Tissue and Blood in the Microwave Frequency Range // Sensors. 2019. Vol. 19. Iss. 7. PP. 1‒21. doi: 10.3390/s19071707
  13. Gregory A.P., Quéléver K., Allal D., Jawad O. Validation of a Broadband Tissue-Equivalent Liquid for SAR Measurement and Monitoring of its Dielectric Properties for Use in a Sealed Phantom // Sensors. 2020. Vol. 20. Iss. 10. PP. 1‒13. doi: 10.3390/s20102956
  14. Lun’kov A.E., Kovalev D.G. Dispersion of Water Conductivity in the Frequency Range of 104–106 Hz // Russian Journal of Electrochemistry. 2019. Vol. 55. PP. 1246‒1250. doi: 10.1134/S1023193519120103
  15. Zhuravlev V.A., Suslyaev V.I., Zhuravlev A.V., Korovin E.Yu. Analysis of Dielectric Spectra of Water with Conductive Impurities in a Wide Frequency Range // Russian Physics Journal. 2018. Vol. 60. PP. 1893‒1900. doi: 10.1007/s11182-018-1299-4
  16. Water Structure and Science. URL: https://water.lsbu.ac.uk/water/water_structure_science.html (Accessed 21.01.2024)
  17. Wilson P.F., Ma M.T., Adams J.W. Techniques for measuring the electromagnetic shielding effectiveness of materials. I. Far-field source simulation // IEEE Transactions on Electromagnetic Compatibility. 1988. Vol. 30. Iss. 3. PP. 239‒250. doi: 10.1109/15.3302
  18. Wilson P.F., Ma M.T. A Study of Techniques for Measuring the Electromagnetic Shielding Effectiveness of Materials. NBS technical note № 1095. Washington: U.S. Government Printing Office, 1986. 66 p.
  19. Невежин В.Н., Бусыгина А.В., Комнатнов М.Е. Анализ электрических параметров жидкостей в коаксиальной камере при изменении температуры // Ural Radio Engineering Journal. 2023. Т. 7. № 1. С. 37–55. doi: 10.15826/urej.2023.7.1.003. EDN:UJYZTS
  20. Demakov A.V., Komnatnov M.E. Development of an improved coaxial cell for measuring the shielding effectiveness of materials // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 734. PP. 1‒6. doi: 10.1088/1757-899X/734/1/012077
  21. Database Summary // IT IS FOUNDATION. URL: https://itis.swiss/virtual-population/tissue-properties/database/database-summary (Accessed 21.01.2024)
  22. Vidjak K., Hessinger C., Cavagnaro M. Broadband Dielectric Spectroscopy with a Microwave Ablation Antenna // Sensors. 2023. Vol. 23. Iss. 5. PP. 1‒21. doi: 10.3390/s23052579

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».