Formation of lexical and grammatical skills of technical university students based on phrasal verbs of the English language through practice with a chatbot

Cover Page

Cite item

Full Text

Abstract

Importance. The current stage of digital transformation of education, supported by global initiatives from UNESCO and the national development strategies of the Russian Federation until 2030, is characterized by the integration of innovative technologies such as artificial intelligence (AI) technologies into the higher education system. This area is particularly relevant in technical universities, where the formation of professional foreign language communicative competence is the main goal of foreign language education. Phrasal verbs, widely used in professional communication and technical documentation, remain one of the most difficult lexical and grammatical categories of the English language for students of future engineers. However, in practice, their study is complicated by the lack of a systematic approach in textbooks, a shortage of classroom hours, and the low effectiveness of traditional methods of teaching vocabulary and grammar. To achieve the main purpose of the study, chatbots are used as a tool for extracurricular speech practice aimed at automating the skills of using phrasal verbs. The purpose of this study is to determine the effectiveness of the methodology for the formation of lexical and grammatical skills of technical university students based on phrasal verbs of the English language through practice with a chatbot.

Research Methods. To conduct this study, the following groups of methods were used: a) theoretical: study and analysis of domestic and foreign pedagogical, methodological, and psychological scientific literature on the research problem; analysis and generalization of experience on the problem under study, modeling; b) empirical: observation, questioning, interview, testing; c) statistical: quantitative and qualitative analysis results obtained, mathematical data processing; d) formative: experimental work was carried out under controlled conditions to verify the author's teaching methodology; the data obtained were used to analyze and identify cause-and-effect relationships between variables. The effectiveness of the methodology for the formation of lexical and grammatical skills of technical university students based on phrasal verbs through practice with a chatbot was carried out by comparing the test results at the ascertaining and control stages. IBM SPSS Statistics 21 software was used to analyze the data, and the averages were compared according to the parametric statistical method, the Student’s t-test. The object of control was 15 lexical and grammatical skills (9 receptive and 6 productive skills).

Literature Review. During the analysis of scientific and educational literature on the research topic, the results of scientific papers on the use of chatbots for the formation of foreign language communicative competence were summarized, and the main research directions were identified.

Results and Discussion. The developed methodology for the formation of lexical and grammatical skills of technical university students based on phrasal verbs of the English language through practice with a chatbot was tested during experimental study and proved its effectiveness in comparison with traditional teaching methods in all controlled parameters. The conducted experimental study revealed that at the initial stage of training, both groups of control group (CG) (N = 24) and experimental group (EG) (N = 24) have an equal level of language training, since there was no statistical significance between the groups (p > 0.05 for most of the controlled parameters). The indicators in the EG have a high statistical significance (p < 0.001), which indicates the pronounced effectiveness of the applied teaching methodology. In CG, most indicators are also significant, but the significance level varies between p < 0.001 (parameters 2–8, 10–11, 13–15) and p < 0.05 (parameters 1, 9, 12). The least pronounced and having weak statistical significance in CG is the controlled parameter No. 1 “to correlate the sound form of a word with its meaning” (*p = 0.037), while in EG, despite the fact that it was better formed, it nevertheless has a low t = 4.87 (p < 0.001) compared to with other skills. The difference in effectiveness between СG and EG is obvious due to the fact that the Student’s t-test scores in EG are significantly higher than in СG, for example, for parameter No. 6 “to differentiate phrasal verbs and similar monolex verbs” t = 4.67 (СG) versus t = 7.89 (EG). The largest gap in the Student’s t-criterion is observed in productive skills, for example, for parameter No. 9 “to predict grammatical constructions with phrasal verbs” t = 4.12 (CG) versus t = 8.12 (EG).

Conclusion. Experimental study has revealed that chatbots ChatGPT and DeepSeek do not have the technical capability to develop listening skills. At the same time, some chatbots (for example, Replika AI) provide more natural communication, TalkPal chatbots and Praktika.ai are more effective for correcting errors. Speech practice with a chatbot aroused the interest of students, which helped to increase their motivation to learn English. The interactive learning format and the ability to receive instant feedback have made the process more fun and accessible. Using several different chatbots at the same time allowed students to familiarize themselves with the possibilities provided by chatbots and choose the one that best suited the needs of a particular student. The results of the research can be used in further study to identify the linguistic and didactic potential of AI technologies and its application in the framework of foreign language training for students of nonlinguistic universities, the formation of lexical and grammatical skills of students through other AI technologies, as well as in the methodology of teaching a foreign language.

About the authors

M. N. Evstigneev

Derzhavin Tambov State University

Author for correspondence.
Email: maximevstigneev@bk.ru
Maxim N. Evstigneev, Cand. Sci. (Education), Associate Professor of Linguistics and Linguodidactics DepartmentScopus ID: 57206855992ResearcherID: AAE-8965-202233 Internatsionalnaya St., Tambov, 392000 Russian Federation

P. I. Lobeeva

Bauman Moscow State Technical University

Email: guninap@gmail.com
Polina I. Lobeeva, English Lecturer of “English for Mechanical Engineering” DepartmentBld. 1, 5, 2-nd Baumanskaya St., Moscow, 105005 Russian Federation

N. V. Hausmann-Ushkova

Derzhavin Tambov State University

Email: nush2001@mail.ru
Nadezhda V. Hausmann-Ushkova, Dr. Sci. (Philology), Professor, Professor of Linguistics and Linguodidactics Department33 Internatsionalnaya St., Tambov, 392000 Russian Federation

References

  1. Sysoyev P.V. (2023). Artificial intelligence technologies in teaching a foreign language. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 6-16. (In Russ.) https://elibrary.ru/qfmzhw
  2. Avramenko A.P., Akhmedova A.S., Bulanova E.R. (2023). Chatbot technology as a means of forming foreign language grammatical competence in self-study. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review: Series Humanities, vol. 28, no. 2, pp. 386-394. (In Russ.) https://doi.org/10.20310/1810-0201-2023-28-2-386-394, https://elibrary.ru/abfjqp
  3. Cherkasova E.A. (2023). Didactic and methodical functions of chatbots in teaching foreign language grammar to non-linguistic students. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review: Series Humanities, vol. 28, no. 6, pp. 1443-1451. (In Russ.) https://doi.org/10.20310/1810-0201-2023-28-6-1443-1451, https://elibrary.ru/cvexfj
  4. Kharlamenko I.V. (2024). Artificial intelligence to assist foreign language teacher in working on lexical skills. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 55-60. (In Russ.) https://elibrary.ru/pxxouk
  5. Ivchenko M.I., Polyakov O.G. (2025). Using the ELSA speak AI tool in pronunciation teaching and learning. Inostrannye yazyki v shkole = Foreign Languages at School, no. 2, pp. 54-58. (In Russ.) https://elibrary.ru/zrvafq
  6. Sysoyev P.V., Ivchenko M.I. (2025). Development of learners’ foreign language pronunciation skills on the basis of artificial intelligence tools. Perspektivy nauki i obrazovaniya = Perspectives of Science and Education, no. 2, pp. 600-614. (In Russ.) https://doi.org/10.32744/pse.2025.2.38, https://elibrary.ru/jrddjj
  7. Evstigneev M.N. (2024). Planning a foreign language lesson using generative artificial intelligence technologies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review: Series Humanities, vol. 29, no. 3, pp. 617-634. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-3-617-634, https://elibrary.ru/ahylwe
  8. Evstigneev M.N. (2024). Thematic control and criteria-based assessment of foreign language writing skills using artificial intelligence technologies. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review: Series Humanities, vol. 29, no. 4, pp. 913-926. (In Russ.) https://doi.org/10.20310/1810-0201-2024-29-4-913-926, https://elibrary.ru/jaajxe
  9. Sysoyev P.V., Filatov E.M. (2023). Method of the development of students’ foreign language communication skills based on practice with a chatbot. Perspektivy nauki i obrazovaniya = Perspectives of Science and Education, no. 3 (63), pp. 201-218. (In Russ.) https://doi.org/10.32744/pse.2023.3.13, https://elibrary.ru/fjyhew
  10. Canale M., Swain M. (1980). Theoretical bases of communicative approaches to second language teaching and testing. Applied Linguistics, no. 1, pp. 47-54. https://elibrary.ru/ilaqrh
  11. Krylov E.G., Khalyapina L.P., Arkhipova E.I. (2021). Teaching English as a language of profession for engineering students: an integrative approach. Yazyk i kul’tura = Language and Culture, no. 54, pp. 203-223. (In Russ.) https://doi.org/10.17223/19996195/54/12, https://elibrary.ru/aitvkz
  12. Sysoyev P.V., Belyaev A.A., Evstigneev M.N. (2024). Development of a method of teaching trainee doctors foreign language professional communication based on an integrated approach. Perspektivy nauki i obrazovaniya = Perspectives of Science and Education, no. 3 (69), pp. 284-300. (In Russ.) https://doi.org/10.32744/pse.2024.3.17, https://elibrary.ru/jmemvf
  13. Sysoyev P.V., Zavyalov V.V. (2021). Methodological principles of subject-language integrated learning. Inostrannye yazyki v shkole = Foreign Languages at School, no. 5, pp. 30-39. (In Russ.) https://elibrary.ru/cfuofx
  14. Galskova N.D., Gez N.I. (2009). Theory of Teaching Foreign Languages. Linguodidactics and Methodology. Moscow, Akademiya Publ., 336 p. (In Russ.)
  15. Shhukin A.N., Frolova G.M. (2015). Methods of Teaching Foreign Languages. Moscow, Akademiya Publ., 287 p. (In Russ.)
  16. Fryer L., Carpenter R. (2006). Bots as language learning tools. Language Learning & Technology, vol. 10, no. 3, pp. 8-14. https://doi.org/10.64152/10125/44068
  17. Labadze L., Grigolia M., Machaidze L. (2023). Role of AI chatbots in education: systematic literature review. International journal of Educational Technology in Higher education, vol. 20, no. 1, art. 56. https://doi.org/10.1186/s41239-023-00426-1, https://elibrary.ru/wklbvu
  18. Yoon S.Y. (2019). Student readiness for AI instruction: perspectives on AI in university EFL classrooms. Multimedia-Assisted Language Learning, no. 22 (4), pp. 134-160.
  19. Fryer L.K., Nakao K., Thompson A. (2019). Chatbot learning partners: Connecting learning experiences, interest and competence. Computers in Human Behaviour, no. 93, pp. 279-289.
  20. Çakmak F. (2022). Chatbot-human interaction and its effects on EFL students’ L2 speaking performance and speaking anxiety. Novitas-ROYAL (Research on Youth and Language), no. 16 (2), pp. 113-131.
  21. Huang W., Hew T., Fryer L.K. (2022). Chatbots for language learning – are they really useful? A systematic review of chatbot-supported language learning. Journal of Computer Assisted Learning, no. 38 (1), pp. 237-257. https://doi.org/10.1111/jcal.12610, https://elibrary.ru/bdwitp
  22. Tikhonova N.V., Ilduganova G.M. (2024). “What scares me is the speed at which artificial intelligence is developing”: students’ perceptions of artificial intelligence in foreign language teaching. Vysshee obrazovanie v Rossii = Higher Education in Russia, vol. 33, no. 4, pp. 63-83. (In Russ.) https://doi.org/10.31992/0869-3617-2024-33-4-63-83, https://elibrary.ru/fnuavr
  23. Sorokin D.O. (2023). Attitude of school and university students’ towards the use of artificial intelligence chatbots in education. Derzhavinskij forum = Derzhavin Forum, vol. 7, no. 1 (25), pp. 21-30. (In Russ.) https://elibrary.ru/revite
  24. Dewi D.F., Nur’Aini S., Suwarti T.S. (2023). Students’ perception on the use of chatbot from Memrise site and their willingness to communicate in English. Linguistics and Education Journal, no. 2 (1), pp. 11-21.
  25. Khatri B.B., Karki P.D. (2023). Artificial intelligence (AI) in higher education: growing academic integrity and ethical concerns. Nepalese Journal of Development and Rural Studies, no. 20 (01), pp. 1-7. https://doi.org/10.3126/njdrs.v19i01.51910, https://elibrary.ru/aiobxf
  26. Sysoyev P.V. (2024). Ethics and AI-plagiarism in an academic environment: students’ understanding of compliance with author’s ethics and the problem of plagiarism in the process of interaction with generative artificial intelligence. Vysshee obrazovanie v Rossii = Higher Education in Russia, vol. 33, no. 2, pp. 31-53. (In Russ.) https://doi.org/10.31992/0869-3617-2024-33-2-31-53, https://elibrary.ru/vtaiuo
  27. Titova S.V. (2024). Technological solutions based on artificial intelligence in teaching foreign languages: an analytical review. Vestnik Moskovskogo universiteta. Seriya 19: Lingvistika i mezhkul’turnaya kommunikatsiya = Moscow State University Bulletin. Series 19. Linguistics and Intercultural Communication, no. 2, pp. 18-37. (In Russ.) https://doi.org/10.55959/MSU-2074-1588-19-27-2-2, https://elibrary.ru/owsqvg
  28. Sysoyev P.V., Evstigneev M.N. (2025). Integration of artificial intelligence technologies in language and methodological pre-service teachers’ training. Yazyk i kul’tura = Language and Culture, no. 69, pp. 204-219. (In Russ.) https://doi.org/10.17223/19996195/69/10, https://elibrary.ru/guzvbi
  29. Lobeeva P.I. (2023). The didactic potential of using chatbots in teaching and learning English phrasal verbs. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review: Series Humanities, vol. 28, no. 6, pp. 1467-1476. (In Russ.) https://doi.org/10.20310/1810-0201-2023-28-6-1467-1476, https://elibrary.ru/fmyeoc
  30. Kim N. (2019). A study on the use of artificial intelligence chatbots for improving English grammar skills. Journal of Digital Convergence, no. 17, pp. 37-46.
  31. Sorokin D.O. (2025). The use of Character.ai web application for the development of learners’ foreign language communication skills. Inostrannye yazyki v shkole = Foreign Languages at School, no. 2, pp. 59-65. (In Russ.) https://elibrary.ru/kpckof

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».