Взаимное снижение уровня мРНК ANG и VEGF при прогрессирующем ангиогенезе венозной системы печени крыс Wistar в экспериментальном циррозе

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Введение. В настоящее время понимание молекулярных механизмов патологического ангиогенеза остается фундаментальной проблемой в гепатологии. Цель работы состояла в поиске связи между уровнем экспрессии мРНК генов ang, vegf и ангиогенезом в печени крыс Wistar в экспериментальном циррозе. Материал и методы. В эксперименте использовали 117половозрелых крыс-самцов Wistar массой тела от 190-210 г. Цирроз печени у животных индуцировали раствором тиоацетамида, который вводили в желудок с помощью зонда в дозе 200 мг/кг массы тела животного 2 раза в неделю. Динамику процесса изучали в девяти временных точках (в течение 17 нед). Методом полимеразной цепной реакции в режиме реального времени в печени исследовали уровень экспрессии мРНК генов ang и vegf. Для получения обзорных гистологических препаратов срезы печени окрашивали гематоксилином и эозином, а для выявления соединительной ткани - методом Маллори. Микроскопический анализ проводили с использованием микроскопа OLYMPUS BX51 и программ анализа изображений ImageScope Color и cellSens Standard. Степень фиброза оценивали с использованием полуколичественной шкалы Ishak K.G. Заключение. Установлена статистически значимая зависимость между уровнем экспрессии суммарной мРНК генов-мишеней, ангиогенезом венозной системы и фиброгенезом. Со стороны артериальной системы печени на протяжении всего эксперимента выраженных морфологических изменений не отмечено, т.е. артериальный ангиогенез не выявлен. Вероятно, сплайс формы мРНК генов ang и vegf изученные в рамках данного исследования являются более важными факторами при патологическом ангиогенезе венозной системы. Между генами-мишенями выявлены значимые корреляционные связи r=0,65-0,84 (сплайс варианты, которые были исследованы). Совместное относительно друг друга изучение генов является необходимым дополнительным параметром при проведении фундаментальных и доклинических исследований.

Об авторах

Елена Ивановна Лебедева

Витебский государственный ордена Дружбы народов медицинский университет

Автор, ответственный за переписку.
Email: lebedeva.ya-elenale2013@yandex.ru
доцент кафедры гистологии, цитологии и эмбриологии; Доцент, кандидат биологических наук Республика Беларусь, 210009, Витебск, пр-т Фрунзе, 27

Анатолий Тадеушевич Щастный

Витебский государственный ордена Дружбы народов медицинский университет

Email: admin@vsmu.by
Профессор, доктор медицинских наук. Республика Беларусь, 210009, Витебск, пр-т Фрунзе, 27

Андрей Сергеевич Бабенко

Белорусский государственный медицинский университет

Email: labmdbt@gmail.com
доцент кафедры биоорганической химии; Кандидат химических наук Республика Беларусь, 220116, Минск, пр. Дзержинского, 83, корп. 15

Список литературы

  1. Lafoz E., Ruart M., Anton A., Oncins A., Hernanadez-Gea V. The endothelium as a driver of liver fibrosis and regeneration. Cells. 2020; 9 (4): 929. https://doi.org/10.3390/cells9040929.
  2. Yang X., Wang Z., Kai J., Wang F., Jia Y., Wang S., Tan S., Shen X., Chen A., Shao J., Zhang F., Zhang Z., Zheng S. Curcumol attenuates liver sinusoidal endothelial cell angiogenesis via regulating Glis-PROX1-HIF-1a in liver fibrosis. Cell Prolif. 2020; 53 (3): 12762. https://doi.org/10.1111/cpr.12762.
  3. He Z., Yang D., Fan X., Zhang M., Li Y, Gu X., Yang M. The roles and mechanisms of lncrnas in liver fibrosis.Int. J. Mol. Sci. 2020; 21 (4): 1482. https://doi.org/10.3390/ijms21041482.
  4. Roehlen N., Crouchet E., Baumert T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells. 2020; 9 (4): 875. https://doi.org/10.3390/cells9040875.
  5. Fenrandez M., Semela D., Bruix J., Colle I., Pinzani M., Bosch J. Angiogenesis in liver disease. J. Hepatol. 2009; 50 (3): 604-20. https://doi.org/10.10Wj.jhep.2008.12.011.
  6. Coulon S., Heindryckx F, Geerts A., Van Steenkiste C., Colle I., Van Vlierberghe H. Angiogenesis in chronic liver disease and its complications. Liver Int. 2011; 31 (2): 146-62. https://doi.org/10.111Vj.1478-3231.2010.02369.x.
  7. Carmeliet P., Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011; 473 (7347): 298-307. https://doi.org/10.1038/nature10144.
  8. Elpek G.O. Angiogenesis and liver fibrosis. World J. Hepatol. 2015; 7 (3): 377-91. https://doi.org/10.4254/wjh.v7.i3.377.
  9. Bocca C., Novo E., Miglietta A., Parola M. Angiogenesis and fibrogenesis in chronic liver diseases. Cell. Mol. Gastroenterol. Hepatol. 2015; 1 (5): 477-88. https://doi.org/10.1016/j.jcmgh.2015.06.011.
  10. Ding Q., Tian X.G., Li Y, Wang Q.Z., Zhang C.Q. Carvedilol may attenuate liver cirrhosis by inhibiting angiogenesis through the VEGF-Src-ERK signaling pathway. World J. Gastroenterol. 2015; 21 (32): 9566-76. https://doi.org/10.3748/wjg.v21.i32.9566.
  11. Yang L., Kwon J., Popov Y, Gajdos G.B., Ordog T., Brekken R.A., Mukhopadhyay D., Schuppan D., Bi Y, Simonetto D., Shah VH. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology. 2014; 146 (5): 1339-50. e1. https://doi.org/10.1053/j.gastro.2014.01.061.
  12. Lee J.S., Semela D., Iredale J., Shah V.H. Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology. 2007; 45 (3): 817-25. https://doi.org/10.1002/hep.21564.
  13. Ni Y, Li J.M., Liu M.K., Zhang T.T., Wang D.P., Zhou W.H., Hu L.Z., Lv W.L. Pathological process of liver sinusoidal endothelial cells in liver diseases. World J. Gastroenterol. 2017; 23 (43): 7666-77. https://doi.org/10.3748/wjg.v23.i43.7666.
  14. Garbuzenko D.V, Arefyev N.O., Kazachkov E.L. Antiangiogenic therapy for portal hypertension in liver cirrhosis: Current progress and perspectives. World J. Gastroenterol. 2018; 24 (33): 3738-48. https://doi.org/10.3748/wjg.v24.i33.3738.
  15. Guerrier M., Attili F., Alpini G., Glaser S. Prolonged administration of secretin to normal rats increases biliary proliferation and secretin-induced ductal secretory activity. Hepatobiliary Surg. Nutr. 2014; 3 (3): 118-25. https://doi.org/10.3978/j1ssn.23043881.2014.04.04.
  16. Everhart J.E., Wright E.C., Goodman Z.D., Dienstag J.L., Hoefs J.C., Kleiner D.E., Ghany M.G., Mills A.S., Nash S.R., Govindarajan S., Rogers T.E., Greenson J.K., Brunt E.M., Bonkovsky H. L., Morishima C. Prognostic value of Ishak fibrosis stage: findings from the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology. 2010; 51 (2): 585-94. https://doi.org/10.1002/hep.23315.
  17. Amano H., Mastui Y., Ito Y., Shibata Y, Betto T., Eshima K., Ogawa F., Satoh Y, Shibuya M., Majima M. The role of vascular endothelial growth factor receptor 1 tyrosine kinase signaling in bleomycin-induced pulmonary fibrosis. Biomed. Pharmacother, 2019; 117: 109067. https://doi.org/10.10Wj.biopha.2019.109067.
  18. Salum G.M., El Din N.G.B., Ibrahim M.K., Anany M.A., Dawood R.M., Khairy A., El Awady M.K. Vascular endothelial growth factor expression in hepatitis C virus-induced liver fibrosis: A potential biomarker, J.Interferon Cytokine Res. 2017; 37 (7): 310-6. https://doi.org/10.1089/jir.2016.0127.
  19. Barratt S.L., Flower V.A., Pauling J.D., Millar A.B. VEGF (Vascular Endothelial Growth Factor) and fibrotic lung disease.Int. J. Mol. Sci. 2018; 19 (5): 1269. https://doi.org/10.3390/ijms19051269.
  20. Щастный А.Т, Лебедева Е.И., Бабенко А.С. Роль уровня мРНК генов сигнального пути Notch при индуцированном фиброгенезе печени крысы. Вестник ВГМУ 2021; 20 (2): 25-37. https://doi.org/10.22263/2312-4156.2021.2.25

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Динамика суммарного уровня мРНК гена ang. * – нормализованные значения уровня мРНК гена ang, референсный ген Hes1, референсная контрольная точка – m0

Скачать (29KB)
3. Рис. 2. Динамика суммарного уровня мРНК гена vegf. * – нормализованные значения уровня мРНК гена vegf, референсный ген Hes1, референсная контрольная точка – m0

Скачать (29KB)
4. Рис. 3. Гистологический препарат печени крысы с индуцированным циррозом через 11 нед после начала эксперимента. Ангиогенез отмечен стрелками. Окраска гематоксилином и эозином; ×20

Скачать (253KB)
5. Рис. 4. Гистологический препарат печени крысы с индуцированным циррозом через 17 нед после начала эксперимента. Выраженный ангиогенез выделен рамками овальной формы. Окраска по методу Маллори; ×10

Скачать (263KB)
6. Рис. 5. Гистологический препарат печени крысы с индуцированным циррозом через 17 нед после начала эксперимента. Окраска по методу Маллори; ×10

Скачать (271KB)
7. Рис. 6. Динамика изменений площади междольковых вен и площади соединительной ткани. Представлен график параметрического двухфакторного дисперсионного анализа

Скачать (44KB)
8. Рис. 7. Динамика изменений уровня мРНК генов vegf и ang. Представлен график параметрического двухфакторного дисперсионного анализа

Скачать (42KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».