Significance of altered neutrophil extracellular traps formation during the development of pregnancy complications among patients with gestational diabetes mellitus

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Introduction. The interest in neutrophil extracellular traps (NETs) in various conditions, including pregnancy complications was increased over the last decade. Accompanied by gestational diabetes mellitus (GDM) hyperglycemia contributes to neutrophil’s activation and the formation of NETs.

The aim of study. In this study, we assess NETosis and placental function parameters of women who received diet only or insulin for treatment of gestational diabetes (GDMD/GDMI).

Methods. PR3 circulating levels, associated with NETs formation and placental expression were analyzed by ELISA and immunohistochemistry respectively in GDMD (n=35), GDMI (n=30) and healthy pregnant women (n=30). Clinical data, placental alpha microglobulin-1 (PAMG), placental lactogen and trophoblast glycoprotein (TGB) immunohistochemistry expression were characterized in 30 placentas of GDMD, 20 – GDMI and 25 uncomplicated pregnancies.

Results. PR3 placental expression was increased in complicated pregnancies (GDMD – 60,94 vs 31,88, p<0,001, GDMI – 64,42 vs 31,88, р=0,009) with no statistical differences between GDMD and GDMI. Though placental protein expression indicated potential ischemia among GDMI patients, newborn’s condition was the same like healthy mother’s group. Placental protein expression and clinical data between GDMD and uncomplicated pregnancy women were similar.

Conclusion. The study proposes that NETosis in GDM patients in adequate therapy condition, perhaps don’t stimulate pregnancy complications, in contrast – presents consequences of preexisting placental damage.

Sobre autores

Marina Shamarakova

S.S. Yudin City Clinical Hospital

Autor responsável pela correspondência
Email: mshamarakova@yandex.ru
ORCID ID: 0000-0002-0972-4350

Candidate of Medical Sciences, Pathologist of pathology department

Rússia, Kolomenskiy passage, 4, Moscow, 115446

Ksenia Artem`eva

Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Center of Surgery”

Email: artemjeva_ksenia@mail.ru
ORCID ID: 0000-0002-1014-752X

Candidate of Medical Sciences, Senior researcher of the reproduction pathology laboratory

Rússia, Abrikosovsky lane, 2, Moscow, 119991

Natalia Nizyaeva

Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Center of Surgery”

Email: nizyaeva@gmail.com
ORCID ID: 0000-0001-5592-5690

Doctor of Medical Sciences, Head of the reproduction pathology laboratory

Rússia, Abrikosovsky lane, 2, Moscow, 119991

Georgy Zayratyants

S.S. Yudin City Clinical Hospital

Email: goshaz@mail.ru
ORCID ID: 0000-0002-9265-5017

Candidate of Medical Sciences, Head of Pathology Department

Rússia, Kolomenskiy passage, 4, Moscow, 115446

Irina Stepanova

Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Center of Surgery”

Email: i-ste@yandex.ru
ORCID ID: 0000-0002-5513-217X

Researcher of the reproduction pathology laboratory

Rússia, Abrikosovsky lane, 2, Moscow, 119991

Alexandr Stepanov

Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Center of Surgery”

Email: 9163407056@mail.ru
ORCID ID: 0000-0002-5036-1387

Researcher of the reproduction pathology laboratory

Rússia, Abrikosovsky lane, 2, Moscow, 119991

Alina Akhmetshina

Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Center of Surgery”

Email: malina.alina2001@mail.ru
ORCID ID: 0009-0005-6366-6031

Researcher of the reproduction pathology laboratory

Rússia, Abrikosovsky lane, 2, Moscow, 119991

Yulia Dobrokhotova

FSAEI HE “N.I.Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation

Email: pr.dobrohotova@mail.ru
ORCID ID: 0000-0001-6571-3448

Doctor of Medical Sciences, Professor, Head of the Department of Obstetrics and Gynecology, Faculty of Medicine

Rússia, Ostrovityanova str., 1, Moscow, 117513

Liudmila Mikhaleva

Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Center of Surgery”

Email: mikhalevalm@yandex.ru
ORCID ID: 0000-0003-2052-914X

Doctor of Medical Sciences, Professor, Corresponding Member of RAS, Director, Head of the Laboratory of Clinical Morphology

Rússia, Abrikosovsky lane, 2, Moscow, 119991

Bibliografia

  1. Herre M., Cedervall J., Mackman N., Olsson A.K. Neutrophil extracellular traps in the pathology of cancer and other inflammatory diseases. Physiol Rev. 2023; 103 (1): 277–312. https://doi.org 10.1152/physrev.00062.2021.
  2. Morales-Primo A.U., Becker I., Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles. Int Rev Immunol. 2022; 41 (2): 253–74. https://doi.org 10.1080/08830185.2021.1921174.
  3. Islam M.M., Takeyama N. Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. Int. J. Mol. Sci. 2023; 24 (21): 15805. https://doi.org 10.3390/ijms242115805.
  4. Zhang H., Wang Y., Qu M., Li W., Wu D., Cata J.P., Miao C. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023; 13 (1): e1170. https://doi.org 10.1002/ctm2.1170.
  5. Воронова О.В., Милованов А.П., Михалева Л.М. Интеграционный подход в исследовании сосудов плаценты при преэклампсии. Клиническая и экспериментальная морфология. 2022; 11 (3): 30–44. doi: 10.31088/CEM2022.11.3.30-44. [Voronova OV, Milovanov AP, Mikhaleva LM. Integration approach to study placental vessels in preeclampsia. Clinical and experimental morphology. 2022; 11 (3): 30–44. doi: 10.31088/CEM2022.11.3.30-44 (in Russian)]
  6. Tarry-Adkins J.L., Aiken C.E., Ozanne S.E. Neonatal, infant, and childhood growth following metformin versus insulin treatment for gestational diabetes: A systematic review and meta-analysis. PLoS Med. 2019; 16 (8): e1002848. https://doi.org 10.1371/journal.pmed.1002848.
  7. Njeim R., Azar W.S., Fares A.H., Azar S.T., Kfoury Kassouf H., Eid A.A. NETosis contributes to the pathogenesis of diabetes and its complications. J. Mol. Endocrinol. 2020; 65 (4): 65–76. https://doi.org 10.1530/JME-20-0128.
  8. Богданова И.М., Артемьева К.А., Болтовская М.Н., Низяева Н.В. Потенциальная роль нейтрофильных внеклеточных ловушек в патогенезе преэклампсии. Проблемы репродукции. 2023; 29 (1): 63–72. [Bogdanova IM, Artem’eva KA, Boltovskaya MN, Nizyaeva NV. The potential role of neutrophil extracellular traps in the pathogenesis of preeclampsia. Russian J. Of Human Reproduction. 2023; 29 (1): 63 72. https://doi.org/10.17116/repro20232901163 (in Russian)]
  9. Nizyaeva N.V., Kulikova G.V., Nagovitsyna M.N., Kan N.E., Prozorovskaya K.N., Shchegolev A.I., Sukhikh G.T. Expression of MicroRNA-146a and MicroRNA-155 in Placental Villi in Early- and Late-Onset Preeclampsia. Bull Exp. Biol. Med. 2017; 163 (3): 394–9. https://doi.org 10.1007/s10517-017-3812-0.
  10. Wang Y., Xiao Y., Zhong L., Ye D., Zhang J., Tu Y., Bornstein S.R., Zhou Z., Lam K.S., Xu A. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with β-cell autoimmunity in patients with type 1 diabetes. Diabetes. 2014; 63 (12): 4239–48. https://doi.org 10.2337/db14-0480.
  11. Старосветская Н.А., Назимова С.В., Степанова И.И. и др. Получение комплекса моноклональных антител для иммуногистохимических исследований в области физиологии и патологии репродукции. Клиническая и экспериментальная морфология. 2012; 2: 22–7. [Starosvetskaya N.A., Nazimova S.V., Stepanova I.I. et al. Production of monoclonal antibodies set for immunohistochemical studies in the field of physiology and pathology of human reproduction. Clinical and experimental morphology. 2012; 2: 22–7 (in Russian)]
  12. Artemieva K.A., Stepanova Y.V., Stepanova I.I., Shamarakova M.V., Tikhonova N.B., Nizyaeva N.V., Tsakhilova S.G., Mikhaleva L.M. Morfofunctional and Molecular Changes in Placenta and Peripheral Blood in Preeclampsia and Gestational Diabetes Mellitus. Dokl Biol Sci. 2023; 513 (1): 387–94. doi: 10.1134/S0012496623700722.
  13. Aslanian-Kalkhoran L., Mehdizadeh A., Aghebati-Maleki L., Danaii S., Shahmohammadi-Farid S., Yousefi M. The role of neutrophils and neutrophil extracellular traps (NETs) in stages, outcomes and pregnancy complications. J. Reprod Immunol. 2024; 163: 104237. https://doi.org 10.1016/j.jri.2024.104237.
  14. Vokalova L., van Breda S.V., Ye X.L., Huhn E.A., Than N.G., Hasler P., Lapaire O., Hoesli I., Rossi S.W., Hahn S. Excessive Neutrophil Activity in Gestational Diabetes Mellitus: Could It Contribute to the Development of Preeclampsia? Front Endocrinol (Lausanne). 2018; 9: 542. https://doi.org 10.3389/fendo.2018.00542.
  15. Guillotin F., Fortier M., Portes M., Demattei C., Mousty E., Nouvellon E., Mercier E., Chea M., Letouzey V., Gris J.C., Bouvier S. Vital NETosis vs. suicidal NETosis during normal pregnancy and preeclampsia. Front Cell Dev Biol. 2023; 10: 1099038. https://doi.org 10.3389/fcell.2022.1099038.
  16. Kärkkäinen H., Laitinen T., Heiskanen N., Saarelainen H., Valtonen P., Lyyra-Laitinen T., Vanninen E., Heinonen S. Need for insulin to control gestational diabetes is reflected in the ambulatory arterial stiffness index. BMC Pregnancy Childbirth. 2013; 13: 9. https://doi.org 10.1186/1471–2393-13-9.
  17. Bergwik J., Kristiansson A., Allhorn M., Gram M., Åkerström B. Structure, Functions, and Physiological Roles of the Lipocalin α1-Microglobulin (A1M). Front Physiol. 2021; 12: 645650. https://doi.org 10.3389/fphys.2021.645650.
  18. Sibiak R., Jankowski M., Gutaj P., Mozdziak P., Kempisty B., Wender-Ożegowska E. Placental Lactogen as a Marker of Maternal Obesity, Diabetes, and Fetal Growth Abnormalities: Current Knowledge and Clinical Perspectives. J. Clin. Med. 2020; 9 (4): 1142. https://doi.org 10.3390/jcm9041142.
  19. Davenport B.N., Wilson R.L., Jones H.N. Interventions for placental insufficiency and fetal growth restriction. Placenta. 2022; 125: 4–9. https://doi.org 10.1016/j.placenta.2022.03.127.
  20. Martin-Estal I., Castorena-Torres F. Gestational Diabetes Mellitus and Energy-Dense Diet: What Is the Role of the Insulin/IGF Axis? Front Endocrinol (Lausanne). 2022; 13: 916042. https://doi.org 10.3389/fendo.2022.916042.
  21. Ruiz-Palacios M., Ruiz-Alcaraz A.J., Sanchez-Campillo M., Larqué E. Role of Insulin in Placental Transport of Nutrients in Gestational Diabetes Mellitus. Ann Nutr Metab. 2017; 70 (1): 16–25. https://doi.org 10.1159/000455904.
  22. Muralimanoharan S., Maloyan A., Myatt L. Mitochondrial function and glucose metabolism in the placenta with gestational diabetes mellitus: role of miR-143. Clin Sci (Lond). 2016; 130 (11): 931–41. https://doi.org 10.1042/CS20160076.
  23. Alam S.M.K., Jasti S., Kshirsagar S.K., Tannetta D.S., Dragovic R.A., Redman C.W., Sargent I.L., Hodes H.C., Nauser T.L., Fortes T., Filler A.M., Behan K., Martin D.R., Fields T.A., Petroff B.K., Petroff M.G. Trophoblast Glycoprotein (TPGB/5T4) in Human Placenta: Expression, Regulation, and Presence in Extracellular Microvesicles and Exosomes. Reprod Sci. 2018; 25 (2): 185–97. https://doi.org 10.1177/1933719117707053.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The meanings of blood tests results between patients with gestational diabetes mellitus and healthy pregnant women. There were no significant differences between groups

Baixar (105KB)
3. Fig. 2. Immunohistochemical staining of placental specimens of gestational diabetes mellitus and healthy pregnant for PAMG (а–в), PL (г–е), TBG (ж–и) × 200) Note: а, г, ж – GDMD; б, д, з – GDMI; в, е, и – physiological pregnancy.

Baixar (440KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».