Features of local synthesis of neurotrophic factors under the influence of fractal stimulation phototherapy in a model of retinal pigment epithelium atrophy on rabbit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Introduction. It is assumed that in degenerative diseases of the retina, photostimulation with fractal dynamics signals activates neuroplasticity, increasing the effectiveness of visual rehabilitation. Previously, we demonstrated the positive effect of fractal optic stimulation (FS) on the intraocular synthesis of neurotrophins in rabbits without ophthalmopathology and proved the safety of long-term courses of photostimulation for the retina.

Purpose of the study: to evaluate changes in the intraocular production of neurotrophic cytokines against the background of the use of low-intensity fractal optical therapy in the model of retinal pigment epithelium (RPE) atrophy in an in vivo experiment.

Material and methods. The study material was vitreous body (VH) samples of 38 (76 eyes) Soviet Chinchilla rabbits with a model of RPE atrophy.

Depending on the type of exposure used, animals with RPE atrophy were divided into groups: the main group – 18 animals (36 eyes – FS), the control group – 18 animals (36 eyes – exposure to light from an incandescent lamp). The comparison group consisted of 2 rabbits (4 eyes) with RPE atrophy without exposure. Photostimulation sessions were carried out daily. The duration of each FS session was 20 minutes. The duration of FS courses ranged from 7 to 90 days. The concentrations of BDNF, CNTF, IL-6, NGF, and PEDF were determined in the CT samples using enzyme immunoassay. The results were recorded using a Cytation 5 multifunctional photometer.

Results. PEDF, BDNF, and NGF were detected in 100% of the CT test samples from the main and control groups of animals. IL-6 was detected only in 1 case, and CNTF was not detected in the samples. For the first time, the dynamics of intraocular production of neurotrophic factors was determined under the influence of fractal photostimulation on a model of RPE atrophy. Under the influence of FS, the level of BDNF production statistically significantly increased in the eyes of animals with RPE atrophy and indicated the initiation of reparative mechanisms in the retina in response to RPE damage. With an increase in the duration of the course of light stimulation in the main and control groups, a gradual weakening of the intraocular BDNF synthesis was noted, more rapid in the control group. Of particular interest were the changes in intraocular PEDF production under the influence of FS courses of different durations: individual analysis demonstrated an increase in intraocular cytokine production in 16.7% of eyes after a 1-week course of therapy with a maximum level of 58.7 pg/ml, an increase in the number of therapy sessions led to a significant decrease in its concentration in the CT in 80% of cases.

Conclusion. The results of the study allow us to conclude that FS affects the production of neurotrophic factors in RPE atrophy in the experiment: the most noticeable effects were found in relation to PEDF and BDNF. Individual analysis of changes in local PEDF synthesis indicates the advisability of prescribing a 1-week FS course lasting 1 week in the treatment of macular pathology associated with impaired RPE function, photoreceptors (for example, in AMD). The data obtained seem important for the development of the FS method and its translation into the clinic for visual rehabilitation of patients with neurodegenerative diseases of the retina.

About the authors

Natalia V. Balatskaya

FSBI "National Medical Research Center for Eye Diseases named after. Helmholtz" Ministry of Health of Russia

Author for correspondence.
Email: balnat07@rambler.ru
ORCID iD: 0000-0001-8007-6643

Head of the Department of Immunology and Virology, Leading Researcher, Candidate of biological sciences

Russian Federation, st. Sadovaya-Chernogryazskaya, 14/19, Moscow, 105062

Denis V. Fadeev

FSBI "National Medical Research Center for Eye Diseases named after. Helmholtz" Ministry of Health of Russia

Email: denis.fadeev@mail.ru
ORCID iD: 0000-0003-1858-2005

Researcher, Scientific Experimental Center

Russian Federation, st. Sadovaya-Chernogryazskaya, 14/19, Moscow, 105062

Marina V. Zueva

FSBI "National Medical Research Center for Eye Diseases named after. Helmholtz" Ministry of Health of Russia

Email: visionlab@yandex.ru
ORCID iD: 0000-0002-0161-5010

Head of the Department of Clinical Physiology of Vision named after S.V. Kravkov, Professor, biological sciences. Dr.

Russian Federation, st. Sadovaya-Chernogryazskaya, 14/19, Moscow, 105062

Nataliya V. Neroeva

FSBI "National Medical Research Center for Eye Diseases named after. Helmholtz" Ministry of Health of Russia

Email: secr@igb.ru
ORCID iD: 0000-0003-1038-2746

ophthalmologist Department of Retina and Optic Nerve, Сandidate of biological sciences

Russian Federation, st. Sadovaya-Chernogryazskaya, 14/19, Moscow, 105062

Angelina G. Brilliantova

FSBI "National Medical Research Center for Eye Diseases named after. Helmholtz" Ministry of Health of Russia

Email: angelinabrilliantova@gmail.com
ORCID iD: 0000-0001-6424-8724

postgraduate student Department of Retina and Optic Nerve

Russian Federation, st. Sadovaya-Chernogryazskaya, 14/19, Moscow, 105062

Yuri S. Timofeev

FSBI "National Medical Research Center for Therapy and Preventive Medicine" of the Ministry of Health of the Russian Federation

Email: YTimofeev@gnicpm.ru
ORCID iD: 0000-0001-9305-6713

Head of the Laboratory for the Study of Biochemical Risk Markers, Candidate of Medical Sciences

Russian Federation, Petroverigsky per., 10, Moscow, 101990

References

  1. Marchesi N., Fahmideh F., Boschi F., Pascale A., Barbieri A. Ocular Neurodegenerative Diseases: Interconnection between Retina and Cortical Areas. Cells. 2021; 10 (9): 2394. doi: 10.3390/cells10092394.
  2. World population ageing 2023: Challenges and opportunities of population ageing in the least developed countries. United Nations. UN DESA/POP/2023/TR/NO. 5, N.Y., 2023.
  3. Wang X., Chen W., Zhao W., Miao M. Risk of glaucoma to subsequent dementia or cognitive impairment: a systematic review and meta-analysis. Aging Clin Exp Res. 2024; 36 (1): 172. doi: 10.1007/s40520-024-02811-w.
  4. Enciu A.M., Nicolescu M.I., Manole C.G., Mureşanu D.F., Popescu L.M., Popescu B.O. Neuroregeneration in neurodegenerative disorders. BMC Neurol. 2011; 11: 75. doi: 10.1186/1471-2377-11-75.
  5. Зуева М.В., Ковалевская М.А., Донкарева О.В., Каранкевич А.И., Цапенко И.В., Таранов А.А., Антонян В.Б. Фрактальная фототерапия в нейропротекции глаукомы. Офтальмология. 2019; 16 (3): 317–28. https://doi.org/10.18008/1816-5095-2019-3-317-328. [Zueva M.V., Kovalevskaya M.A., Donkareva O.V., Karankevich A.I., Tsapenko I.V., Taranov A.A., Antonyan V.B. Fractal Phototherapy in Neuroprotection of Glaucoma. Ophthalmology in Russia. 2019; 16 (3): 317–28 (In Russian)]
  6. Нероев В.В., Зуева М.В., Нероева Н.В., Фадеев Д.В., Цапенко И.В., Охоцимская Т.Д., Котелин В.И., Павленко Т.А., Чеснокова Н.Б., Манахов П.А., Чуйкин Н.К. Воздействие фрактальной зрительной стимуляции на здоровую сетчатку кролика: функциональные, морфометрические и биохимические исследования. Российский офтальмологический журнал. 2022; 15 (3): 99–111, doi: 10.21516/2072-0076-2022-15-3-99-111. [Neroev V.V., Zueva M.V., Neroeva N.V., Fadeev D.V., Tsapenko I.V., Okhotsimskaya T.D., Kotelin V.I., Pavlenko T.A., Chesnokova N.B. Impact of fractal visual stimulation on healthy rabbit retina: functional, morphometric and biochemical studies. Russian Ophthalmological J. 2022; 15 (3): 99–111 (In Russian)]
  7. Xiang W., Li L., Zhao Q. Zeng Y., Shi J., Chen Z., Gao G., Lai K. PEDF protects retinal pigment epithelium from ferroptosis and ameliorates dry AMD-like pathology in a murine model. GeroScience. 2024; 46: 2697–714. https://doi.org/10.1007/s11357-023-01038-3
  8. Blanco R.E., López-Roca A., Soto J., Blagburn J.M. Basic fibroblast growth factor applied to the optic nerve after injury increases long-term cell survival in the frog retina. J. Comp Neurol. 2000; 423: 646–58.
  9. Rocco M.L., Balzamino B.O., Petrocchi Passeri P., Micera A., Aloe L. Effect of purified murine NGF on isolated photoreceptors of a rodent developing retinitis pigmentosa. PLoS One. 2015; 10 (4): e0124810. https://doi.org/10.1371/journal.pone.0124810.
  10. Osborne A., Khatib T. Z., Songra L., Barber A. C., Hall K., Kong G. Y. X., Widdowson P.S., Martin K.R. Neuroprotection of Retinal Ganglion Cells by a Novel Gene Therapy Construct that Achieves Sustained Enhancement of Brain-Derived Neurotrophic Factor/tropomyosin-Related Kinase Receptor-B Signaling. Cell Death Dis. 2018; 9 (10): 1007–18. https://doi.org/10.1038/s41419-018-1041-8
  11. Dekeyster E., Geeraerts E., Buyens T., Van den Haute C., Baekelandt V., De Groef L., Salinas-Navarro M., Moons L. Tackling Glaucoma from within the Brain: an Unfortunate Interplay of BDNF and TrkB. PLoS One. 2015; 10 (11): e0142067
  12. Muste J.C., Russell M.W., Singh R.P. Photobiomodulation Therapy for Age-Related Macular Degeneration and Diabetic Retinopathy: A Review. Clin Ophthalmol. 2021; 15: 3709–20. doi: 10.2147/OPTH.S272327.
  13. Alcalá-Barraza S.R., Lee M.S., Hanson L.R., McDonald A.A., Frey W.H. 2nd, McLoon L.K. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J. Drug Target. 2010; 18 (3): 179–90. doi: 10.3109/10611860903318134.
  14. Балацкая Н.В., Фадеев Д.В., Зуева М.В., Нероева Н.В. Локальная продукция нейротрофических факторов при воздействии фрактальной стимуляционной фототерапии на сетчатку кроликов. Молекулярная медицина. 2023; 21 (5): 52–8. https://doi.org/10.29296/24999490-2023-05-08. [Balatskaya N.V., Fadeev D.V., Zueva M.V., Neroeva N.V. Local production of neurotrophic factors under influence of fractal stimulation phototherapy on the rabbits retina. Molekulyarnaya meditsina. 2023; 21 (5): 52–8 https://doi.org/10.29296/24999490-2023-05-08 (in Russian)].
  15. Srinivasan K., Tikoo K., Jena G.B. Good Laboratory Practice (GLP) Requirements for Preclinical Animal Studies. In: Nagarajan P., Gudde R., Srinivasan R. (Eds). Essentials of Laboratory Animal Science: Principles and Practices. Springer: Singapore. 2021; 1: 655–77.
  16. ГОСТ 33647-2015. Принципы надлежащей лабораторной практики (GLP). Термины и определения. М.: Росстандарт, федеральное агентство по техническому регулированию и метрологии, 2016; 1–20.
  17. ARVO Statement for the Use of Animals in Ophthalmic and Visual Research. 2016. Доступно URL: https://www.arvo.org/About/policies/arvo-statement-for-the-use-of-animals-in-ophthalmic-and-vision-research/
  18. Нероева Н.В., Нероев В.В., Илюхин П.А., Кармокова А.Г., Лосанова О.А., Рябина М.В., Майбогин А.М. Моделирование атрофии ретинального пигментного эпителия. Российский офтальмологический журнал. 2020; 13 (4): 58–63. doi: 10.21516/2072-0076-2020-13-4-58-63. [Neroeva N.V., Neroev V.V., Ilyukhin P.A., Karmokova A.G., Losanova O.A., Ryabina M.V., Maybogin A.M. Modeling the atrophy of retinal pigment epithelium. Russian Ophthalmological J. 2020; 13 (4): 58–63. https://doi.org/10.21516/2072-0076-2020-13-4-58-63 (in Russian)]
  19. Balzamino B.O., Esposito G., Marino R., Keller F., Micera A. Changes in vitreal protein profile and retina mRNAs in Reeler mice: NGF, IL33 and Müller cell activation. PLoS One. 2019; 14 (2): e0212732. doi: 10.1371/journal.pone.0212732
  20. Santos F.M., Mesquita J., Castro-de-Sousa J.P., Ciordia S., Paradela A., Tomaz C.T. Vitreous Humor Proteome: Targeting Oxidative Stress, Inflammation, and Neurodegeneration in Vitreoretinal Diseases. Antioxidants (Basel). 2022; 11 (3): 505. doi: 10.3390/antiox11030505
  21. Berk B.A., Vogler S., Pannicke T., et al. Brain-derived neurotrophic factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by activation of basic fibroblast growth factor signaling. Neuroscience. 2015; 295: 175–86.
  22. Ho T.C., Chen S.L., Yang Y.C., Liao C.L., Cheng H.C., Tsao Y.P. PEDF induces p53-mediated apoptosis through PPAR gamma signaling in human umbilical vein endothelial cells. Cardiovasc Res. 2007; 76 (2): 213–23. doi: 10.1016/j.cardiores.2007.06.032.
  23. Yamagishi S, Matsui T, Adachi H, Takeuchi M. Positive association of circulating levels of advanced glycation end products (AGEs) with pigment epithelium-derived factor (PEDF) in a general population. Pharmacol Res. 2010; 61 (2): 103–7. doi: 10.1016/j.phrs.2009.07.003
  24. Xiang W., Li L., Hong F., Zeng Y., Zhang J., Xie J., Shen G., Wang J., Fang Z., Qi W., Yang X., Gao G., Zhou T. N-cadherin cleavage: A critical function that induces diabetic retinopathy fibrosis via regulation of β-catenin translocation. FASEB J. 2023; 37 (4): e22878. doi: 10.1096/fj.202201664RR.
  25. Tombran-Tink J., Barnstable C.J. PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci. 2003; 4 (8): 628–36. doi: 10.1038/nrn1176
  26. Fudalej E., Justyniarska M., Kasarełło K., Dziedziak J., Szaflik J., Cudnoch-Jędrzejewska A. Neuroprotective Factors of the Retina and Their Role in Promoting Survival of Retinal Ganglion Cells: A Review. Ophthalmic Res. 2021; 64: 345–55. doi: 10.1159/000514441.
  27. Seki M., Tanaka T., Sakai Y., Fukuchi T., Abe H., Nawa H., Takei N. Muller cells as a source of brain-derived neurotrophic factor in the retina: Noradrenaline upregulates brain-derived neurotrophic factor levels in cultured rat muller cells. Neurochemical Research. 2005; 30 (9): 1163–70. doi: 10.1007/s11064-005-7936-7.
  28. Afarid M, Namvar E, Sanie-Jahromi F. Diabetic Retinopathy and BDNF: A Review on Its Molecular Basis and Clinical Applications. J. Ophthalmol. 2020; 2020: 1602739. doi: 10.1155/2020/1602739
  29. Wu P.Y., Fu Y.K., Lien R.I., Chiang M.C., Lee C.C., Chen H.C., Hsueh Y.J. et al. Systemic Cytokines in Retinopathy of Prematurity. J. Pers Med. 2023; 13 (2): 291. doi: 10.3390/jpm13020291
  30. Liu Y., Tao L., Fu X., Zhao Y., and Xu X., BDNF protects retinal neurons from hyperglycemia through the TrkB/ERK/MAPK pathway, Molecular Medicine Reports. 2013; 7 (6): 1773–8. https://doi.org/10.3892/mmr.2013.1433, 2-s2.0-84877244728.
  31. Rocco M.L., Calzà L., Aloe L. NGF and Retinitis Pigmentosa: Structural and Molecular Studies. Adv Exp Med Biol. 2021; 1331: 255–63. doi: 10.1007/978-3-030-74046-7_17
  32. Garcia T.B., Hollborn M., Bringmann A. Expression and signaling of NGF in the healthy and injured retina. Cytokine Growth Factor Rev. 2017; 34: 43–57. doi: 10.1016/j.cytogfr.2016.11.005
  33. Mali R.S., Cheng M., Chintala S.K. Plasminogen activators promote excitotoxicity-induced retinal damage. FASEB J. 2005; 19 (10): 1280–9. doi: 10.1096/fj.04-3403com.
  34. Sahin K., Gencoglu H., Akdemir F., Orhan C., Tuzcu M., Sahin N., Yilmaz I., Juturu V. Lutein and zeaxanthin isomers may attenuate photo-oxidative retinal damage via modulation of G protein-coupled receptors and growth factors in rats. Biochem Biophys Res Commun. 2019; 516 (1): 163–70. DOI:https://doi.org/10.1016/j.bbrc.2019.06.032.
  35. Mishra I.R. Knerr M., Stewart1 A.A., Payette W.I., Richter M.M., Ashley N.T. Light at night disrupts diel patterns of cytokine gene expression and endocrine profiles in zebra finch (Taeniopygia guttata), Sci Rep. 2019; 9 (1): 15833. doi: 10.1038/s41598-019-51791-9
  36. Hernández-Pinto A., Polato F., Subramanian P., de la Rocha-Muñoz A., Vitale S., de la Rosa E.J., Becerra S. P. PEDF peptides promote photoreceptor survival in rd10 retina models. Exp Eye Res. 2019; 184: 24–9. doi: 10.1016/j.exer.2019.04.008.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of local PEDF production in the main group (pg/ml) at early (7 days) and late (30 days and later) stages of FS exposure

Download (67KB)
3. Fig. 2. Dynamics of local NGF production in the main group (pg/ml) at early (7th day) and late (30 days and later) stages of FS exposure

Download (84KB)
4. Fig. 3. Dynamics of local NGF production in the control group (pg/ml) at early (7th day) and late (30 days and later) stages of FS exposure

Download (79KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».