Assessment of articulation parameters settings repeatability in Avantis 3D software

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The three-dimensional (3D) space of a virtual articulator requires precise adjustment considering individual parameters for the precision work of orthopedic dentists, orthodontists, and dental technicians. A modern solution that includes a virtual articulator is the domestic Avantis 3D software, which simplifies and speeds up functional diagnostics by creating a 3D scene of the patient.

AIM: To compare a repeatability of articulation parameters obtained when adjusting the domestic virtual articulator Avantis 3D using laboratory and intraoral scans of terminal positions of the lower jaw.

MATERIALS AND METHODS: A group of 30 volunteers aged 18–35 years participated in this study. The group consisted of 18 women and 12 men. Each participant underwent a computed tomography of the maxillofacial region, including the temporomandibular joint region in a state of habitual occlusion; one-stage A-silicone impressions were obtained, plaster models were cast, and silicone bite registers of three terminal positions were made. An intraoral scan of the upper and lower jaws was performed, and optical bite scans were obtained in the position of maximum fissure-tubercle contact and in the terminal positions of the lower jaw, fixed by previously obtained silicone registers. The same protocol was conducted for plaster models of the patient’s dentition and silicone registers of terminal positions. Using intraoral scans, optical recorders of terminal positions and computer tomograms in the Avantis 3D program and 3D scenes were created, and a virtual articulator was configured.

For each patient, the virtual articulator was adjusted in the Avantis 3D software, seven times using data from the intraoral scanner level and seven times from the laboratory level.

The reproducibility of articulatory parameters was assessed for all types of scans obtained, examining the standard and individual intercondylar distances for each patient.

RESULTS: The average values of the standard square deviation of articulatory parameters obtained when creating 3D scenes using laboratory scans at individual and standard intercondylar distances were higher than the similar values obtained using intraoral scans.

CONCLUSION: The accuracy of creating a virtual copy of a patient can be influenced by several factors: the error in combining scans, repeated scanning, the error in combining scans and computer tomograms, the error in combining jaw and bite scans, and the presence of penetrating occlusal contacts between scans of the dentition.

About the authors

Dmitry S. Kovgan

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: megaspayn@mail.ru
ORCID iD: 0009-0000-2390-0413
SPIN-code: 3243-8270
Russian Federation, Moscow

Vladislav A. Erokhin

Samara State Medical University

Author for correspondence.
Email: vladalex.171097@mail.ru
ORCID iD: 0000-0003-1096-7568
SPIN-code: 4724-5883
Russian Federation, Samara

Pavel M. Antonik

Russian University of Medicine

Email: wow-oop@yandex.ru
ORCID iD: 0000-0001-5262-6679
SPIN-code: 7892-3432
Russian Federation, Moscow

Mikhail M. Antonik

Russian University of Medicine

Email: wow-oop@yandex.ru
ORCID iD: 0000-0001-7902-1215
SPIN-code: 8713-4695

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Vasiliy V. Saveliev

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: bazilsav@gmail.com
ORCID iD: 0000-0003-0437-1290
SPIN-code: 9363-9779
Russian Federation, Moscow

Vasiliy A. Parunov

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: vparunov@mail.ru
ORCID iD: 0000-0003-2885-3657
SPIN-code: 8797-6513

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Artak S. Oganesyan

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: Artac@yandex.ru
ORCID iD: 0009-0009-5127-7847
SPIN-code: 3051-2946
Russian Federation, Saint Petersburg

References

  1. Baldissara P, Koci B, Messias AM, et al. Assessment of impression material accuracy in complete-arch restorations on four implants. J Prosthet Dent. 2021;126(6):763–771. doi: 10.1016/j.prosdent.2020.10.017
  2. Ryahovsky AN, Muradov MA, Erokhin VA. Lower jaw virtual reposition accuracy research. Stomatologiya. 2022;101(4):53–60. EDN: KVGLBG doi: 10.17116/stomat202210104153
  3. Ryakhovsky A, Ryakhovsky S. A new concept of 4d virtual planning in dentistry. Advances in Dentistry & Oral Health. 2020;12:00214. doi: 10.19080/ADOH.2019.11.555832
  4. Patent RUS N 2567604 C2/10.11.2015. Christensen KK, Fisker R, Bart KV, Poul’sen TS. Dynamic virtual articulator. EDN: HDZUWS doi: 10.1134/S0040363615100100
  5. Chkhikvadze ТV, Bekreev VV, Roshchin ЕМ, et al. Correction of internal disorders of the temporomandibular joint using muscle relaxation splints made with CAD/CAM technologies. Sovremennye tehnologii v medicine. 2019;11(3):111–116. EDN: KFXJYB doi: 10.17691/stm2019.11.3.15
  6. Subeihi H, Hirayama H, Finkelman M, et al. Comparison of dimensional accuracy of digital dental models. In: Proceedings of the IADR/AADR/CADR General Session and Exhibition 2013; March 2013; Seattle, Washington. Available from: https://www.researchgate.net/publication/266777620_Comparison_of_Dimensional_Accuracy_of_Digital_Dental_Models
  7. Diker B, Tak Ö. Comparing the accuracy of six intraoral scanners on prepared teeth and effect of scanning sequence. J Adv Prosthodont. 2020;12(5):299–306. doi: 10.4047/jap.2020.12.5.299
  8. Ryahovsky AN. Assessment of supracontacts size at digital positioning of scans in habitual occlusion. Stomatologiya. 2021;100(3):60–64. EDN: VKFZNG doi: 10.17116/stomat202110003160

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The stage of temporomandibular joint separation according to computer tomography data.

Download (213KB)
3. Fig. 2. Defects in the polygonal mesh of a laboratory scan of one of the silicone bites.

Download (139KB)
4. Fig. 3. Assessment of the degree of agreement between the triangular meshes of laboratory scans of the plaster model and the silicone bites.

Download (148KB)

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».