Therapeutic and preventive approaches to protecting dental hard tissues and periodontal tissues from non-ionizing electromagnetic radiation: a review
- Authors: Shukurova U.A.1, Gafforov S.A.2, Khatamova S.A.1, Gafforova S.S.1
-
Affiliations:
- Tashkent State Dental Institute
- Center for Professional Development of Medical Workers
- Issue: Vol 29, No 5 (2025)
- Pages: 396-403
- Section: Reviews
- URL: https://bakhtiniada.ru/1728-2802/article/view/349779
- DOI: https://doi.org/10.17816/dent679285
- EDN: https://elibrary.ru/OZPYTC
- ID: 349779
Cite item
Abstract
Non-ionizing electromagnetic fields — from extremely low-frequency power lines to radiofrequency emissions from mobile devices and Wi-Fi — create a steadily increasing environmental background that also affects the oral cavity. Over the past decade, evidence has accumulated showing that such exposure is not biologically neutral: in vitro and in vivo studies have demonstrated reductions in enamel microhardness, initiation of oxidative stress in saliva, corrosion of dental alloys, and disturbances of periodontal homeostasis. However, current clinical guidelines for caries and periodontal disease prevention scarcely account for electromagnetic exposure as a contributing factor. This review summarizes 25 studies published between 2011 and 2025, integrating disparate findings into a unified concept of multilevel protection of the dental hard tissues and periodontium.
For the first time, a comparative effectiveness matrix is proposed in which remineralizing agents (fluoride, calcium-phosphate, nanohydroxyapatite) and antioxidants (melatonin, vitamin C) are evaluated alongside physical methods such as photobiomodulation, Nd:YAG laser treatment, pulsed electromagnetic fields, and shielding coatings. Data analysis indicates that chemical remineralization restores enamel microhardness up to 96% of baseline, while antioxidant therapy reduces salivary lipid peroxidation markers by nearly 40%. Light-based protocols (LED and laser) decrease probing pocket depth by an average of 1.2 mm, whereas local pulsed electromagnetic field exposure accelerates early implant osseointegration and reduces orthodontic relapse.
The uniqueness of this review lies in its integrative interpretation of findings: molecular mechanisms of damage (oxidative stress, demineralization, inflammation) are correlated with the evidence base of preventive strategies, forming a practical algorithm suitable for integration into dental care standards.
Special attention is given to children and adolescents, whose developing enamel absorbs more radiofrequency energy, an aspect rarely addressed in prior reviews.
Finally, the review outlines priority areas for future research: standardization of electromagnetic field dosimetry, long-term randomized clinical trials of combined strategies, and clinical validation of barrier materials. Thus, this review not only systematizes existing approaches but also provides a practical roadmap for mitigating electromagnetic field–induced mineralization defects and inflammatory changes of dental hard tissues and periodontal tissues in the era of ubiquitous digitalization.
Full Text
##article.viewOnOriginalSite##About the authors
Umida A. Shukurova
Tashkent State Dental Institute
Author for correspondence.
Email: shua1981@mail.ru
ORCID iD: 0000-0002-1775-236X
Uzbekistan, Tashkent
Sunnatullo A. Gafforov
Center for Professional Development of Medical Workers
Email: sunnatullogafforov@mail.ru
ORCID iD: 0000-0003-2816-3162
SPIN-code: 9176-2861
MD, Dr. Sci. (Medicine), Professor
Uzbekistan, TashkentShakhlo A. Khatamova
Tashkent State Dental Institute
Email: hatamovasahlo@gmail.com
ORCID iD: 0009-0005-2884-5421
Uzbekistan, Tashkent
Sevara S. Gafforova
Tashkent State Dental Institute
Email: sevara_gafforova@mail.ru
ORCID iD: 0000-0003-0887-4696
Uzbekistan, Tashkent
References
- Arbabi Kalati F, Nosratzehi T. Effect of cell phone use on salivary components; a review of literature. J Complement Integr Med. 2021;20(2):338–342. doi: 10.1515/jcim-2021-0397 EDN: NHAJWV
- Prlić I, Šiško J, Varnai VM, et al. Wi-Fi technology and human health impact: A brief review of current knowledge. Arh Hig Rada Toksikol. 2022;73(2):94–106. doi: 10.2478/aiht-2022-73-3402 EDN: OEEVOC
- Bansal D, Chhaparwal Y, Pai KM, et al. Effect of duration of mobile phone use on the salivary flow and total antioxidant capacity of saliva and salivary immunoglobulin a level: A cross-sectional study. J Int Soc Prev Community Dent. 2022;12(2):260–265. doi: 10.4103/jispcd.JISPCD_361_21 EDN: YPJVSD
- Moghadasi N, Alimohammadi I, Variani AS, Ashtarinezhad A. The effect of mobile radiation on the oxidative stress biomarkers in pregnant mice. J Family Reprod Health. 2021;15(3):172–178. doi: 10.18502/jfrh.v15i3.7134 EDN: DIHKCO
- Dasdag S, Yavuz I, Bakkal M, Kargul B. Effect of long term 900 MHz radiofrequency radiation on enamel microhardness of rat's teeth. Oral Health Dent Manag. 2014;13(3):749–752.
- Kargul B, Yavuz I, Akdag MZ, Durhan A. Effect of extremely low frequency magnetic field on enamel microhardness in rats. Eur J Paediatr Dent. 2011;12(4):253–255.
- Mann NS, Jhamb A, Rana M, et al. Microleakage of amalgam restorations after exposure to electromagnetic fields from common Wi-Fi routers, LTE mobile network and 3T MRI. International Journal of Applied Dental Sciences. 2020;6(1):01–04.
- Shrestha B, Maria Rajan S, Aati S, et al. The synergistic effect of high intensity focused ultrasound on in-vitro remineralization of tooth enamel by calcium phosphate ion clusters. Int J Nanomedicine. 2024;19:5365–5380. doi: 10.2147/IJN.S464998 EDN: IXAHQN
- Danko E, Kostenko YE, Pantyo V. The use of LED radiation in the treatment of periodontitis. Sovremennaja stomatologija. 2024;122(5):17. doi: 10.33295/1992-576X-2024-5-17 EDN: CLCMWW
- Gholami L, Khorsandi K, Fekrazad R. Effect of red and near-infrared irradiation on periodontal ligament stem cells: ROS generation and cell cycle analysis. J Biomol Struct Dyn. 2023;41(19):10051–10058. doi: 10.1080/07391102.2022.2152869
- Peluso V, Rinaldi L, Russo T, et al. Impact of magnetic stimulation on periodontal ligament stem cells. Int J Mol Sci. 2022;23(1):188. doi: 10.3390/ijms23010188 EDN: WEEGNI
- Costantini E, Marconi GD, Fontocoli L, et al. Improved osteogenic differentiation by extremely low electromagnetic field exposure: possible application for bone engineering. Histochem Cell Biol. 2022;158(4):369–381. doi: 10.1007/s00418-022-02126-9 EDN: GQQWNA
- Kiliç B, Ünal HYa, Ekİncİ E, et al. Orthodontic materials interacting with fifth generation (5G) electromagnetic waves. Bezmialem Science. 2024;12(2):217–223. doi: 10.14235/bas.galenos.2023.87059 EDN: RHGADO
- Nayak BP, Dolkart O, Satwalekar P, et al. Effect of the pulsed electromagnetic field (PEMF) on dental implants stability: A Randomized Controlled Clinical Trial. Materials (Basel). 2020;13(7):1667. doi: 10.3390/ma13071667 EDN: XOHYPI
- Maulana H, Yueniwati Y, Permatasari N, et al. Role of pulsed electromagnetic field on alveolar bone remodeling during orthodontic retention phase in rat models. Dent J. 2024;12(9):287. doi: 10.3390/dj12090287 EDN: ETJVRU
- Maulana H, Yueniwati Y, Permatasari N, Suyono H. Pulsed electromagnetic field prevents tooth relapse after orthodontic tooth movement in rat models. J Taibah Univ Med Sci. 2024;20(1):1–12. doi: 10.1016/j.jtumed.2024.12.009 EDN: LUWULR
- Chen L, He D, Li Z, et al. Endo 180 participates in collagen remodeling of the periodontal ligament during orthodontic tooth movement. BMC Oral Health. 2024;24(1):1576. doi: 10.1186/s12903-024-05362-8 EDN: LUWULR
- Winkler M, Breuer HG, Schober L. Aldehyde reductase activity of carboxylic acid reductases. Chembiochem. 2024;25(8):e202400121. doi: 10.1002/cbic.202400121 EDN: QRGJEP
- Kolcunová I, Zbojovsky J, Pavlik M, et al. Shielding effectiveness of electromagnetic field by specially developed shielding coating. Acta Physica Polonica Series A. 2020;137(5):711–713. doi: 10.12693/APhysPolA.137.711 EDN: OZWCFM
- Panagopoulos DJ, Chrousos GP. Shielding methods and products against man-made Electromagnetic Fields: Protection versus risk. Science of The Total Environment. 2019;667:255–262. doi: 10.1016/j.scitotenv.2019.02.344 EDN: MCNWGI
- Altalhi AM, AlNajdi LN, Al-Harbi SG, et al. Laser therapy versus traditional scaling and root planing: a comparative review. Cureus. 2024;16(6):e61997. doi: 10.7759/cureus.61997 EDN: TTWZJU
- Mayer Y, Khoury J, Horwitz J, et al. A novel nonsurgical therapy for peri-implantitis using focused pulsed electromagnetic field: A pilot randomized double-blind controlled clinical trial. Bioelectromagnetics. 2023;44(7-8):144–155. doi: 10.1002/bem.22481 EDN: HTGCIZ
- Faveri M, Miquelleto DEC, Bueno-Silva B, et al. Antimicrobial effects of a pulsed electromagnetic field: an in vitro polymicrobial periodontal subgingival biofilm model. Biofouling. 2020;36(7):862–869. doi: 10.1080/08927014.2020.1825694 EDN: UDKDGV
- Mayer Y, Shibli JA, Saada HA, et al. Pulsed electromagnetic therapy: literature review and current update. Braz Dent J. 2024;35:e24–6109. doi: 10.1590/0103-6440202406109 EDN: CZHHOH
- Asmari DA, Alenezi A. Laser technology in periodontal treatment: benefits, risks, and future directions—A mini review. J Clin Med. 2025;14(6):1962. doi: 10.3390/jcm14061962 EDN: STGSMI
Supplementary files

