Effects of solar activity and geographic latitude on genetic homeostasis of human somatic cells

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Associations between genetic stability of human somatic cells and solar activity across latitudes have been studied. A human buccal epithelium micronucleus test was selected as a method for evaluating genetic homeostasis.

AIM: To assess effects of solar activity on the genetic stability of human somatic cells using the micronucleus test in buccal epithelium in relation to the geographical location of subjects.

METHODS: Men aged 18 to 21 years with no harmful habits and taking no medication comprised the sample. Studies were conducted simultaneously in four cities of the Russian Federation: Sevastopol, Voronezh, Tomsk, and Khanty-Mansiysk. The effect of three types of solar flares, whose classification is based on changes in the amplitude of the thermal X-ray burst, was studied. Material for the cytogenetic study was collected on days 3, 7, and 10 after the solar flare. The human buccal epithelium micronucleus test was selected as a method to evaluate genetic homeostasis. At least 1,000 cells were examined on each preparation, among which the number of cells with micronuclei, perinuclear vacuoles, notches, “broken egg” and “tongue” type protrusions, karyorexis, karyolisis, and karyopyknosis was determined. In total, 495 thousand buccal epithelial cells were analyzed. Statistical processing of the data was performed using “Stadia” and “Statistica” software packages. Effecs of solar andlatitude on genetic homeostasis of somatic cells was performed using multivariate analysis of variance and two-factor analysis of variance with fixed effects.

RESULTS: Solar activity affected the stability of the human genetic apparatus by increasing the influence of the city pollution and its geographical location on the number of cells with nucleus abnormalities. We also observed a combined effect of solar flare and season on the number of cells with nucleus aberrations. More nuclear anomalies were registered in the winter. We did not detect any difference in the number of cells with nucleus anomalies on the 3rd, the 7th, the 10th, and the 17th days after the flare suggesting no associations between solar activity and the number of cells with nuclear abnormalities.

CONCLUSION: The highest number of cells with nucleus abnormalities is observed in Sevastopol reflecting with the greatest level of anthropogenic pollution of this city compared to the other locations. Solar activity increases the influence of the city pollution and its geographical location on the number of cells with nucleus abnormalities. The results obtained can be used in conducting a micronucleus test of human buccal epithelium and in planning measures to assess the genotoxicity of the environment.

About the authors

Vladislav N. Kalaev

Voronezh State University

Author for correspondence.
Email: Dr_huixs@mail.ru
ORCID iD: 0000-0002-4247-4509

dr. sci. (biol.), professor

Russian Federation, 1 Universitetskaya square, 394018 Voronezh

Vladislav P. Zuevsky

Khanty-Mansiysk State Medical Academy

Email: zvp_surgut@mail.ru
ORCID iD: 0000-0002-4662-9205

md, dr. sci. (med.), professor

Russian Federation, Khanty-Mansiysk

Marina S. Nechaeva

N.N. Burdenko Voronezh State Medical University

Email: MAR-Y-ANA@yandex.ru
ORCID iD: 0000-0003-4880-6751

cand. sci. (biol.)

Russian Federation, Voronezh

Nikolay N. Ilyinskikh

National Research Tomsk State University

Email: nauka-tomsk@yandex.ru
ORCID iD: 0000-0003-1014-1096

dr. sci. (biol.), professor

Russian Federation, Tomsk

Ekaterina N. Ilyinskikh

National Research Tomsk State University

Email: infconf2009@mail.ru
ORCID iD: 0000-0001-7646-6905

md, dr. sci. (med.), associate professor

Russian Federation, Tomsk

Anastasiya O. Lantushenko

Sevastopol State University

Email: lantushenko@mail.ru
ORCID iD: 0000-0003-3614-9387

cand. sci. (physics and mathematics), associate professor

Russian Federation, Sevastopol

Olga S. Korneeva

Voronezh State University of Engineering Technologies

Email: korneeva-olgas@yandex.ru
ORCID iD: 0000-0002-2863-0771

dr. sci. (biol.), professor

Russian Federation, Voronezh

Tatiana V. Zuevskaya

Khanty-Mansiysk State Medical Academy

Email: z-alnair@mail.ru
ORCID iD: 0000-0002-9315-1320

md, dr. sci. (med.), associate professor

Russian Federation, Khanty-Mansiysk

Anna V. Larina

Voronezh State University

Email: larina.anyuta2010@yandex.ru
ORCID iD: 0000-0001-5389-9580

assistant lecturer

Russian Federation, Voronezh

Evgeniya N. Shipilova

Voronezh State University of Engineering Technologies

Email: esipilova1505@gmail.com
ORCID iD: 0000-0001-5954-7447

student

Russian Federation, Voronezh

Valentina A. Gavrilova

Sevastopol State University

Email: havrilovavalentina@gmail.com
ORCID iD: 0000-0003-3410-6535

student

Russian Federation, Sevastopol

Denis Yu. Baranov

Sevastopol State University

Email: Baranov663@scientifictext.ru
ORCID iD: 0009-0001-1260-1028

student

Russian Federation, Sevastopol

Irina V. Degtyar

Sevastopol State University

Email: skuratovskaya95@mail.ru
ORCID iD: 0000-0003-3797-7360

assistant lecturer

Russian Federation, Sevastopol

References

  1. Chizhevskij AL. Zemlja i Kosmos. Zemnoe jeho kosmicheskih bur’. 3-e izd. [Internet]. Moscow: Akademicheskij Proekt; 2020. [cited 08.08.2023]. Available from: https://www.studentlibrary.ru/book/ISBN9785829133818.html (In Russ).
  2. Miroshnichenko LI. Solar cosmic rays: 75 years of research. Physics-Uspekhi. 2018;61(4):323–352. doi: 10.3367/UFNr.2017.03.038091
  3. Ozheredov VA, Breus TK, Zeleny LM. Connection between the Intellectual excitability of internet users and increases in solar activity. Izv Atmos Ocean Phys. 2020;56:1346–1358. doi: 10.1134/S0001433820110067
  4. Gurfinkel YI, Sasonko ML, Ozheredov VA, Breus TK. The effects of space and terrestrial weather factors on arterial stiffness and endothelial function in humans. Biophysics. 2018;63(2):299–306. doi: 10.1134/S0006350918020094
  5. Afendiyeva LG, Azizov VA, Etirmishli GD. Influence of geophysical parameters on the human body. Meditsinskie novosti. 2020;(1):43–47.
  6. Grigoryev PE, Vladimirskiy BM, Luskova YuS. Features of military and economic dynamics in the middle ages and early modern period depending on the space weather. Part 1. Space and Time. 2018;(1-2):289–294. doi: 10.24411/2226-7271-2018-11094
  7. Grigoryev PYe, Afanasyeva NA, Vayserman AM. Solar activity as a hazard factor for a Down’s syndrome. Ekologiya cheloveka (Human Ecology). 2009;11:8–11.
  8. Olisova O, Vladimirova EV, Babushkin AM. Skin and Sun. Russian Journal of Skin and Venereal Diseases. 2012;(6):57–62. doi: 10.17816/dv36783
  9. Kalaev VN, Nechaeva MS, Kalaeva EA. Mikrojadernyj test bukkal’nogo jepitelija rotovoj polosti cheloveka: monografija. Voronezh: Izdatel’skij dom VGU; 2016. 136 p. (In Russ).
  10. Mokhov II, Timazhev AV. Vertical temperature stratification of the atmosphere depending on the length of the annual insolation cycle from simulations with the coupled general circulation model. Doklady Earth Sciences. 2020;494(2):795–798. doi: 10.31857/S2686739720100072
  11. Yurchenko VV, Ingel FI, Malysheva AG, et al. Influence of the composition of atmospheric air pollution on genotoxic effects in the buccal epithelial cells in children. Hygiene and Sanitation, Russian Journal. 2022;101(2):201–210. doi: 10.47470/0016-9900-2022-101-2-201-210
  12. Vargas VMF, da Silva Júnior FMR, Silva Pereira TD, et al. A comprehensive overview of genotoxicity and mutagenicity associated with outdoor air pollution exposure in Brazil. J Toxicol Environ Health B Crit Rev. 2023;26(3):172–199. doi: 10.1080/10937404.2023.2175092
  13. Karta Rossii s gorodami i regionami [map]. [cited: 23.06.2023]. Available from: https://yandex.ru/maps/225/russia/ (In Russ).
  14. Jekologicheskij rejting sub#ektov Rossijskoj federacii. Itogi osen’ 2017 [cited: 23.06.2023]. Available from: https://www.greenpatrol.ru/sites/default/files/prilozhenie_1._osen_2017.docx (In Russ).
  15. Borovik AV, Mordvinov AV, Golubeva EM, et al. Restructuring of the solar magnetic fields and flare activity centers in cycle 24. Astronomicheskiy zhurnal. 2020;97(6):521–528. doi: 10.31857/S0004629920070014 https://xras.ru/xras_laboratory.html [Internet]. Laboratory of X-ray Astronomy of the Sun FIAN [cited: 23.06.2023]. Available from: https://xras.ru/xras_laboratory.html (In Russ).
  16. Soboleva ON, Kalaev VN, Nechaeva MS, Kalaeva EA. Evaluation of minimum number of analyzed buccal epithelial cells on the sample during micronucleus test. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2016;(3): 80–84.
  17. Kulaichev AP. Metody i sredstva kompleksnogo analiza dannyh. Moscow: FORUM—INFRA-M; 2006. 512 p. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Frequency of cells with nucleus abnormalities in buccal epitheliocytes of the subjects (‰) depending on the city of residence and season of the year. Designations: a — the difference with the frequency of occurrence of cells with abnormalities occurring in the C-flare is significant (р <0.001); б — the difference with the frequency of cells with abnormalities occurring in the M-flare is significant (р <0.001); в — the difference with the frequency of cells with abnormalities occurring at C-flare is significant (р <0.01); г — the difference with the frequency of cells with abnormalities occurring at C-flare is significant (р <0.05).

Download (416KB)
3. Fig. 2. Frequency of cells with different nucleus abnormalities in buccal epitheliocytes of the subjects (‰) depending on the city of residence and season of the year. Designations: a — the difference with the frequency of cells with abnormalities occurring in the C-flare is significant (р <0.001); б — the difference with the frequency of cells with abnormalities occurring in the M-flare is significant (р <0.001); в — the difference with the frequency of cells with abnormalities occurring at C-flare is significant (р <0.05).

Download (84KB)
4. Fig. 3. Associations between the number of cells with micronuclei (‰) and the day of sampling in the C-flare. Notations: a — the difference with the frequency of cells with abnormalities 10 days after exposure to the flare is significant (р <0.05).

Download (101KB)
5. Fig. 4. Associations between the number of cells with micronuclei (‰) and the day of sampling in the M-flare.

Download (91KB)
6. Fig. 5. Associations between the number of cells with micronuclei (‰) and the day of sampling in the X-flare.

Download (90KB)
7. Fig. 6. Associations between the number of cells with “broken egg” type protrusions (‰) and the day of sampling in the C-flare. Notations: б — the difference with the frequency of cells with abnormalities 7 days after exposure to the flare is significant (р <0.05).

Download (113KB)
8. Fig. 7. Associations between the number of cells with “broken egg” type protrusions (‰) and the day of sampling in the M-flare.

Download (99KB)
9. Fig. 8. Associations between the number of cells with “broken egg” type protrusions (‰) and the day of sampling in the X-flare.

Download (97KB)
10. Fig. 9. Associations between the number of cells with perinuclear vacuoles (‰) and the day of sampling in the C-flare. Notations: a — the difference with the frequency of cells with abnormalities 10 days after exposure to the flare is significant (р <0.05); б — the difference with the frequency of cells with disorders 7 days after exposure to the flare is significant (р <0.05); в — the difference with the frequency of cells with abnormalities 10 days after exposure to the flare is significant (р <0.01).

Download (119KB)
11. Fig. 10. Associations between the number of cells with perinuclear vacuoles (‰) and the day of sampling in the M-flare.

Download (102KB)
12. Fig. 11. Associations between the number of cells with perinuclear vacuoles (‰) on the day of sampling in the X-flare. Notation: г — the difference with the frequency of cells with abnormalities 17 days after exposure to the flare is significant (р <0.01).

Download (99KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».