Modern trends in the development of antifungal agents

Cover Page

Cite item

Full Text

Abstract

Mycoses pose an increasing threat to public health, resulting in millions of invasive infections and a high mortality rate each year. The limited arsenal of antifungal agents, their toxicity, and the rapid spread of resistance underscore the urgent need for new therapeutic strategies. This review systematizes current trends in the development of antimycotic agents intended for the treatment of invasive mycoses. The primary focus is on drugs with novel mechanisms of action targeting key structures and metabolic pathways of the fungal cell. The emphasis is on publications from the past decade; however, significant fundamental research from earlier times has also been taken into account. The search was conducted in the electronic databases eLibrary.ru, PubMed, Google Scholar, and Wally. Promising approaches include inhibition of cell wall component synthesis, disruption of cell membrane function through effects on ergosterol, phospholipids, and sphingolipids, as well as effects on intracellular targets: fungal intracellular proteins and signaling pathways, protein biosynthesis processes, and nucleic acid replication and transcription. Agents inhibiting the synthesis of major cell wall components such as β-1,3-glucan (echinocandins, ibrexafungerpY), β-1,6-glucan, chitin (nikkomycin ZY), and GPI anchors (fosmanogepixY), are reviewed. Agents acting on ergosterol (oteseconazoleY, opelconazoleY), sphingolipids (IPC-synthase inhibitorsY), and phospholipids (mandimycinY) are analyzed. Fungal kinase inhibitors, Hsp90, calcineurin, N-myristoyltransferase, elongation factor EF-2, and nucleic acids (olorofimY) are described. Several of these compounds (olorofimY, fosmanogepixY, VT-1598Y, BSG005) are currently in clinical trials. The importance of identifying selective targets and developing combination therapy to overcome resistance and improve treatment effectiveness is emphasized.

 

Y Hereafter, it means that the medicinal product is not registered in the Russian Federation.

About the authors

Anastasia V. Avtonomova

Centre for Strategic Planning and Management of Biomedical Health Risk; Gause Institute of New Antibiotics

Author for correspondence.
Email: aavtonomova@cspfmba.ru
ORCID iD: 0000-0001-5098-5379
SPIN-code: 4409-8108

Cand. Sci. (Biology)

Russian Federation, Moscow; Moscow

Olga V. Kisil

Gause Institute of New Antibiotics

Email: olvv@mail.ru
ORCID iD: 0000-0003-4799-1318
SPIN-code: 1153-8414

Cand. Sci. (Chemistry)

Russian Federation, Moscow

Angelica V. Zagainova

Centre for Strategic Planning and Management of Biomedical Health Risk

Email: azagaynova@cspfmba.ru
ORCID iD: 0000-0003-4772-9686
SPIN-code: 6642-7819

Cand. Sci. (Biology)

Russian Federation, Moscow

Valentin V. Makarov

Centre for Strategic Planning and Management of Biomedical Health Risk

Email: makarov@cspfmba.ru
ORCID iD: 0000-0001-9495-0266
SPIN-code: 7842-8808

Cand. Sci. (Biology)

Russian Federation, Moscow

References

  1. Monk BC, Sagatova AA, Hosseini P, et al. Fungal lanosterol 14α-demethylase: a target for next-generation antifungal design. Biochim Biophys Acta Proteins Proteom. 2020;1868(3):140206. doi: 10.1016/j.bbapap.2019.02.008 EDN: IZPYUA
  2. Fesel PH, Zuccaro A. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol. 2016;90:53–60. doi: 10.1016/j.fgb.2015.12.004
  3. Curto MÁ, Butassi E, Ribas JC, et al. Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Phytomedicine. 2021;88:153556. doi: 10.1016/j.phymed.2021.153556
  4. Emri T, Majoros L, Tóth V, Pócsi I. Echinocandins: production and applications. Appl Microbiol Biotechnol. 2013;97(8):3267–3284. doi: 10.1007/s00253-013-4761-9
  5. Sofjan AK, Mitchell A, Shah DN, et al. Rezafungin (CD101), a next-generation echinocandin: A systematic literature review and assessment of possible place in therapy. J Glob Antimicrob Resist. 2018;14:58–64. doi: 10.1016/j.jgar.2018.02.013
  6. Li Y, Lan N, Xu L, Yue Q. Biosynthesis of pneumocandin lipopeptides and perspectives for its production and related echinocandins. Appl Microbiol Biotechnol. 2018;102(23):9881–9891. doi: 10.1007/s00253-018-9382-x
  7. Jiang K, Luo P, Wang X, Lu L. Insight into advances for the biosynthetic progress of fermented echinocandins of antifungals. Microb Biotechnol. 2024;17(1):e14359. doi: 10.1111/1751-7915.14359
  8. Helmy NM, Parang K. Cyclic peptides with antifungal properties derived from bacteria, fungi, plants, and synthetic sources. Pharmaceuticals. 2023;16(6):892. doi: 10.3390/ph16060892
  9. Vicente F, Reyes F, Genilloud O. Fungerps: discovery of the glucan synthase inhibitor enfumafungin and development of a new class of antifungal triterpene glycosides. Nat Prod Rep. 2024;41(12):1835–1845. doi: 10.1039/d4np00044g
  10. Aderiye BI, Oluwole OA. Antifungal agents that target fungal cell wall components: a review. Agri Biol Sci. 2015;1(5):206–216.
  11. Onishi J, Meinz M, Thompson J, et al. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother. 2000;44(2):368–377. doi: 10.1128/AAC.44.2.368-377.2000
  12. Zhang CW, Zhong XJ, Zhao YuS, et al. Antifungal natural products and their derivatives: a review of their activity and mechanism of actions. Pharmacol. Res.-Mod. Chin. Med. 2023;7:100262. doi: 10.1016/j.prmcm.2023.100262
  13. Martins IM, Cortés JC, Muñoz J, et al. Differential activities of three families of specific beta(1,3)glucan synthase inhibitors in wild-type and resistant strains of fission yeast. J Biol Chem. 2011;286(5):3484–3496. doi: 10.1074/jbc.M110.174300
  14. Lu Y, Duan MH, Zhao X, et al. Pestiorosins A–F, New Papulacandins isolated from the fungus Pestalotiopsis rosea YNJ21. Chem Biodivers. 2025;22(1):e202401921. doi: 10.1002/cbdv.202401921
  15. Roemer T, Delaney S, Bussey H. SKN1 and KRE6 Define a pair of functional homologs encoding putative membrane proteins involved in β-Glucan synthesis. Mol Cell Biol. 1993;13(7):4039–4048. doi: 10.1128/mcb.13.7.4039-4048.1993
  16. Kitamura A, Higuchi S, Hata M, et al. Effect of beta-1,6-glucan inhibitors on the invasion process of Candida albicans: potential mechanism of their in vivo efficacy. Antimicrob Agents Chemother. 2009;53(9):3963–3971. doi: 10.1128/AAC.00435-09
  17. Roncero C, Sanchez-Diaz A, Valdivieso MH. Chitin synthesis and fungal cell morphogenesis. In: Hoffmeister D, editor. Biochemistry and molecular biology. Vol. III. Cham: Springer International Publishing; 2016. P. 167–190. doi: 10.1007/978-3-319-27790-5_9
  18. Larwood DJ. Nikkomycin Z—ready to meet the promise? J. Fungi. 2020;6(4):261. doi: 10.3390/jof6040261
  19. Ibe C, Munro CA. Fungal cell wall: An underexploited target for antifungal therapies. PLoS Pathog. 2021;17(4):e1009470. doi: 0.1371/journal.ppat.1009470
  20. Shubitz LF, Trinh HT, Perrill RH, et al. Modeling nikkomycin Z dosing and pharmacology in murine pulmonary coccidioidomycosis preparatory to phase 2 clinical trials. J Infect Dis. 2014;209(12):1949–1954. doi: 10.1093/infdis/jiu029
  21. Richard ML, Plaine A. Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in candida albicans. Eukaryot Cell. 2007;6(2):119–133. doi: 10.1128/EC.00297-06
  22. Hoenigl M, Sprute R, Egger M, et al. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs. 2021;81(15):1703–1729. doi: 10.1007/s40265-021-01611-0
  23. Miyazaki M, Horii T, Hata K, et al. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother. 2011;55(10):4652–4658. doi: 10.1128/AAC.00291-11
  24. Watanabe N, Miyazaki M, Horii T, et al. E1210, a new broad-spectrum antifungal, suppresses candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob Agents Chemother. 2012;56(2):960–971. doi: 10.1128/AAC.00731-11
  25. Shaw KJ, Ibrahim AS. Fosmanogepix: A review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J. Fungi. 2020;6(4):239. doi: 10.3390/jof6040239
  26. Ruiz-Herrera J, Elorza MV, Valentín E, Sentandreu R. Molecular organization of the cell wall of candida albicans and its relation to pathogenicity. FEMS Yeast Res. 2006;6(1):14–29. doi: 10.1111/j.1567-1364.2005.00017.x
  27. Miyanishi W, Ojika M, Akase D, et al. D-Mannose Binding, aggregation property, and antifungal activity of amide derivatives of Pradimicin A. Bioorg Med Chem. 2022;55:116590. doi: 10.1016/j.bmc.2021.116590
  28. Pan J, Hu C, Yu JH. Lipid biosynthesis as an antifungal target. J Fungi. 2018;4(2):50. doi: 10.3390/jof4020050
  29. Campoy S, Adrio JL. Antifungals. Biochem Pharmacol. 2017;133:86–96. doi: 10.1016/j.bcp.2016.11.019
  30. Sousa F, Nascimento C, Ferreira D, et al. Reviving the interest in the versatile drug Nystatin: a multitude of strategies to increase its potential as an effective and safe antifungal agent. Adv Drug Deliv Rev. 2023;199:114969. doi: 10.1016/j.addr.2023.114969
  31. Kantarcioglu AS, Yucel A, Vidotto V. In vitro activity of a new polyene SPK-843 against Candida spp, Cryptococcus neoformans and Aspergillus spp clinical isolates. J Chemother. 2003;15(3):296–298. doi: 10.1179/joc.2003.15.3.296
  32. Kakeya H, Miyazaki Y, Senda H, et al. Efficacy of SPK-843, a novel polyene antifungal, in comparison with Amphotericin B, Liposomal Amphotericin B, and Micafungin against murine pulmonary aspergillosis. Antimicrob Agents Chemother. 2008;52(5):1868–1870. doi: 10.1128/AAC.01369-07
  33. Wiederhold NP. The antifungal arsenal: alternative drugs and future targets. Int J Antimicrob Agents. 2018;51(3):333–339. doi: 10.1016/j.ijantimicag.2017.09.002
  34. Sobel JD, Donders G, Degenhardt T, et al. Efficacy and safety of Oteseconazole in recurrent vulvovaginal candidiasis. NEJM Evid. 2022;1(8):EVIDoa2100055. doi: 10.1056/EVIDoa2100055
  35. Lockhart SR, Fothergill AW, Iqbal N, et al. The investigational fungal Cyp51 inhibitor VT-1129 demonstrates potent in vitro activity against Cryptococcus neoformans and Cryptococcus gattii. Antimicrob Agents Chemother. 2016;60(4):2528–2531. doi: 10.1128/AAC.02770-15
  36. Schell WA, Jones AM, Garvey EP, et al. Fungal CYP51 inhibitors VT-1161 and VT-1129 exhibit strong in vitro activity against Candida glabrata and C. krusei isolates clinically resistant to azole and echinocandin antifungal compounds. Antimicrob Agents Chemother. 2017;61(3):e01817–16. doi: 10.1128/AAC.01817-16
  37. Wiederhold NP, Patterson HP, Tran BH, et al. Fungal-specific Cyp51 inhibitor VT-1598 demonstrates in vitro activity against candida and Cryptococcus species, endemic fungi, including Coccidioides species, Aspergillus species and Rhizopus Arrhizus. J Antimicrob Chemother. 2018;73(2):404–408. doi: 10.1093/jac/dkx410
  38. Neoh CF, Jeong W, Kong DC, Slavin MA. The antifungal pipeline for invasive fungal diseases: what does the future hold? Expert Rev Anti Infect Ther. 2023;21(6):577–594. doi: 10.1080/14787210.2023.2203383
  39. Sagatova AA. Strategies to better target fungal squalene monooxygenase. J Fungi. 2021;7(1):49. doi: 10.3390/jof7010049
  40. Deng Q, Li Y, He W, et al. A polyene macrolide targeting phospholipids in the fungal cell membrane. Nature. 2025;640(8059):743–751. doi: 10.1038/s41586-025-08678-9
  41. Mor V, Rella A, Farnoud AM, et al. Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. mBio. 2015;6(3):e00647. doi: 10.1128/mBio.00647-15
  42. Zhen C, Lu H, Jiang Y. Novel promising antifungal target proteins for conquering invasive fungal infections. Front Microbiol. 2022;13:911322. doi: 10.3389/fmicb.2022.911322
  43. Wu X, Gong X, Xie T. Mechanisms of aureobasidin A inhibition and drug resistance in a fungal IPC synthase complex. Nat Commun. 2025;16(1):5010. doi: 10.1038/s41467-025-60423-y
  44. Mandala SM, Thornton RA, Rosenbach M, et al. Khafrefungin, a novel inhibitor of sphingolipid synthesis. J Biol Chem. 1997;272(51):32709–32714. doi: 10.1074/jbc.272.51.32709
  45. Iyer KR, Li SC, Revie NM, et al. Identification of triazenyl indoles as inhibitors of fungal fatty acid biosynthesis with broad-spectrum activity. Cell Chem Biol. 2023;30(7):795–810.e8. doi: 10.1016/j.chembiol.2023.06.005
  46. Laakso JA, Raulli R, McElhaney-Feser GE, et al. CT2108A and B: new fatty acid synthase inhibitors as antifungal agents. J Nat Prod. 2003;66(8):1041–1046. doi: 10.1021/np030046g
  47. Blankenship JR, Fanning S, Hamaker JJ, Mitchell AP. An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog. 2010;6(2):e1000752. doi: 10.1371/journal.ppat.1000752
  48. Reinoso-Martín C, Schüller C, Schuetzer-Muehlbauer M, Kuchler K. The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukaryot Cell. 2003;2(6):1200–1210. doi: 10.1128/EC.2.6.1200-1210.2003
  49. Jung SI, Rodriguez N, Irrizary J, et al. Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans. PLoS One. 2017;12(11):e0187721. doi: 10.1371/journal.pone.0187721
  50. Puumala E, Nandakumar M, Yiu B, et al. Structure-guided optimization of small molecules targeting Yck2 as a strategy to combat Candida albicans. Nat Commun. 2025;16(1):2156. doi: 10.1038/s41467-025-57346-z
  51. Robbins N, Uppuluri P, Nett J, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog. 2011;7(9):e1002257. doi: 10.1371/journal.ppat.1002257
  52. Yuan R, Tu J, Sheng C, et al. Effects of Hsp90 inhibitor ganetespib on inhibition of azole-resistant Candida albicans. Front Microbiol. 2021;12:680382. doi: 10.3389/fmicb.2021.680382
  53. Tu B, Yin G, Li H. Synergistic effects of vorinostat (SAHA) and azoles against Aspergillus species and their biofilms. BMC Microbiol. 2020;20(1):28. doi: 10.1186/s12866-020-1718-x
  54. Zheng YQ, Pan KS, Latgé JP, et al Calcineurin A is essential in the regulation of asexual development, stress responses and pathogenesis in Talaromyces marneffei. Front Microbiol. 2020;10:3094. doi: 10.3389/fmicb.2019.03094
  55. Steinbach WJ, Cramer RA Jr, Perfect BZ, et al. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot Cell. 2006;5(7):1091–1103. doi: 10.1128/EC.00139-06
  56. Rivera A, Young Lim W, Park E, et al. Enhanced fungal specificity and in vivo therapeutic efficacy of a C-22-modified FK520 analog against C. neoformans. mBio. 2023;14(5):e0181023. doi: 10.1128/mbio.01810-23
  57. Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol. 2008;1(1-4):27–36. doi: 10.1007/s12154-008-0003-5
  58. Utsumi T, Matsuzaki K, Kiwado A, et al. Identification and characterization of protein Nmyristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25. PLoS ONE. 2018;13(11):e0206355. doi: 10.1371/journal.pone.0206355
  59. Javid S, Ather H, Hani U, et al. Discovery of novel myristic acid derivatives as n-myristoyltransferase inhibitors: design, synthesis, analysis, computational studies and antifungal activity. Antibiotics. 2023;12(7):1167. doi: 10.3390/antibiotics12071167
  60. Yeates C. Icofungipen (PLIVA). Curr Opin Investig Drugs. 2005;6(8):838–844.
  61. Shao Y, Molestak E, Su W, et al. Sordarin — an anti-fungal antibiotic with a unique modus operandi. Br J Pharmacol. 2022;179(6):1125–1145. doi: 10.1111/bph.15724
  62. Parish CA, Smith SK, Calati K, et al. Isolation and structure elucidation of parnafungins, antifungal natural products that inhibit mRNA polyadenylation. J Am Chem Soc. 2008;130(22):7060–7066. doi: 10.1021/ja711209p
  63. Qiao J, Gao P, Jiang X, Fang H. In vitro antifungal activity of farnesyltransferase inhibitors against clinical isolates of Aspergillus and Candida. Ann Clin Microbiol Antimicrob. 2013;12:37. doi: 10.1186/1476-0711-12-37
  64. du Pre S., Birch M., Law D., et al. The dynamic influence of Olorofim (F901318) on the cell morphology and organization of living cells of Aspergillus fumigatus. J Fungi. 2020;6:47. doi: 10.3390/jof6020047
  65. Wiederhold NP. Pharmacodynamics, mechanisms of action and resistance, and spectrum of activity of new antifungal agents. J Fungi. 2022;8(8):857. doi: 10.3390/jof8080857
  66. Odds FC. Genomics, molecular targets and the discovery of antifungal drugs. Rev Iberoam Micol. 2005;22(4):229–237. doi: 10.1016/s1130-1406(05)70048-6
  67. Gabriel I. 'Acridines' as new horizons in antifungal treatment. Molecules. 2020;25(7):1480. doi: 3390/molecules25071480

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».