Нейрофизиологические корреляты депрессивных расстройств (обзор литературы)


Цитировать

Полный текст

Аннотация

В статье представлен обзор исследований, посвященных нейрофизиологическим характеристикам депрессивных расстройств. В основе данных расстройств лежит сложное взаимодействие социальных, психологических и биологических факторов. Заболеваемость во всех возрастных группах составляет от 3 до 17 %. Высокая частота встречаемости депрессивных расстройств, сложное течение, тенденция к хронизации, а также резистентность к медикаментозному лечению обусловливают необходимость подробного изучения этих состояний. В обзоре отражена важность анализа электроэнцефалографии (ЭЭГ). Патологические ЭЭГ-признаки выявляются у 70-80 % депрессивных больных. Благодаря современным методам математического анализа и обработки электроэнцефалографических данных увеличивается диагностическая и научно-исследовательская значимость метода. Математический анализ ЭЭГ даёт более подробную информацию о функциональном состоянии головного мозга, расширяет понимание механизмов взаимодействия различных областей мозга, увеличивает возможности диагностики и позволяет выдвинуть новые задачи в области изучения деятельности головного мозга. Клинические особенности депрессивных расстройств находят своё отражение в синхронной генерации электрических сигналов в зависимости от этиологической принадлежности депрессивного симптомокомплекса и доминирования в структуре депрессивного расстройства того или иного аффекта. Использование современных методов визуализационных исследований (однофотонная эмиссионная компьютерная томография, позитронно-эмиссионная томография и магнитно-резонансная томография) также позволяют выявлять функциональные взаимосвязи в сложном взаимодействии различных областей мозга, характерные для депрессивных состояний.

Об авторах

И С Кожевникова

Северный (Арктический) федеральный университет имени М. В. Ломоносова

Email: i.s.kozhevnikova@narfu.ru
кандидат биологических наук, старший научный сотрудник научно-исследовательской лаборатории функциональных резервов организма института медико-биологических исследований 163045, г. Архангельск, пр. Бадигина, д. 3

А В Грибанов

Северный (Арктический) федеральный университет имени М. В. Ломоносова

Institute of Biological and Medical Research Архангельск

М Н Панков

Северный (Арктический) федеральный университет имени М. В. Ломоносова

Institute of Biological and Medical Research Архангельск

Л Ф Старцева

Северный (Арктический) федеральный университет имени М. В. Ломоносова

Institute of Biological and Medical Research Архангельск

Е В Тихонова

Северный государственный медицинский университет

Архангельск

Список литературы

  1. Батуев А. С., Иовлева Н. Н. Изменения спектрально-когерентных характеристик ЭЭГ в раннем послеродовом периоде у матерей с тревожно-депрессивным фоном настроения // Журнал высшей нервной деятельности им. И. П. Павлова. 2003. Т. 53, № 6. С. 720-729.
  2. Варламов А. А., Стрелец В. Б. Анализ когерентности ЭЭГ при депрессивных расстройствах: современное состояние и перспективы клинического применения // Журнал высшей нервной деятельности им. И. П. Павлова. 2013. Т. 63, № 6. С. 613.
  3. Войцех В. Ф., Мельникова Т. С., Лапин И. А. Клинико-нейрофизиологические аспекты суицидального поведения // Журнал неврологии и психиатрии им. C. C. Корсакова. 2009. Т. 109, № 10. С. 14-20.
  4. Грибанов А. В., Кожевникова И. С., Джос Ю. С., Нехорошкова А. Н. Спонтанная и вызванная электрическая активность головного мозга при высоком уровне тревожности // Экология человека. 2013. № 1. С. 39-47.
  5. Гудков А. Б., Попова О. Н., Пащенко А. В. Физиологические реакции человека на локальное холодовое воздействие: монография. Архангельск: Изд-во Северного государственного медицинского университета, 2012. 145 с.
  6. Ивонин А. А., Цицеронин М. Н., Куценко А. М. и др. Особенности нарушений процессов межкорковой и корково-подкорковой интеграции при различных клинических проявлениях невротической депрессии // Физиология человека. 2008. Т. 34, № 6. С. 10-22.
  7. Изнак А. Ф., Изнак Е. В., Корнилов В. В., Концевой В. А. Динамика нейрофизиологических показателей при терапии затяжной психогенно спровоцированной депрессии // Психиатрия. 2011. № 1. С. 32.
  8. Изнак А. Ф., Изнак Е. В., Сорокин С. А. Изменения ЭЭГ и времени реакции в процессе терапии апатической депрессии // Журнал неврологии и психиатрии им. С. С. Корсакова. 2011. Т. 111, № 7. С. 49-53.
  9. Изнак А. Ф., Никишова М. Б. Электрофизиологические корреляты депрессивных расстройств // Физиология человека. 2007. Т. 33, № 2. С. 137-139.
  10. Краснов В. Н. Расстройства аффективного спектра. М.: Практическая медицина, 2011. С. 432.
  11. Лапин М. А., Алфимова М. В. ЭЭГ-маркеры депрессивных расстройств // Социальная и клиническая психиатрия. 2014. Т. 24, № 4. С. 81-89.
  12. Мельникова Т. С., Андрушкявичус С. И., Краснов В. Н. Дневная динамика реактивности у больных депрессиями по данным стресс-теста // Журнал неврологии и психиатрии им. С. С. Корсакова. 2013. Т. 113, № 11. С. 59-64.
  13. Мельникова Т. С., Краснов В. Н., Лапин И. А., Андрушкявичус С. И. Дневная динамика характеристик ЭЭГ при циркулярных депрессивных расстройствах // Психическое здоровье. 2009. Т. 12, № 43. С. 43-47.
  14. Мельникова Т. С., Лапин И. А. Когерентный анализ ЭЭГ при депрессивных расстройствах различного генеза // Социальная и клиническая психиатрия. 2008. Т. 28, № 3. С. 27-32.
  15. Мельникова Т. С., Лапин И. А., Саркисян В. В. Информативность использования когерентного анализа ЭЭГ в психиатрии // Функциональная диагностика. 2009. № 1. С. 88.
  16. Основные сведения о депрессии: информационный бюллетень ВОЗ. 2017. URL: http://www.who. int/mediacentre/factsheets/fs369/ru/ (дата обращения: 20.08.2017)
  17. Панков М. Н. Дистанционное консультирование детей с эмоциональными и поведенческими нарушениями // Вестник Северного (Арктического) федерального университета. Сер. «Медико-биологические науки». 2013. № 2. С. 30-38.
  18. Пащенко А. В., Гудков А. Б., Волосевич А. И. Реакция срединных структур головного мозга на локальное охлаждение по данным ЭЭГ // Экология человека. 2001. № 4. С. 43-45.
  19. Смулевич А. Б. Депрессии в общей медицине. М.: Медицинское информационное агентство, 2001.
  20. Стрелец В. Б., Авин А. И, Зверев С. Н. Картирование биопотенциалов мозга у больных депрессивным синдромом // Журнал высшей нервной деятельности. 1990. № 40. С. 4-6.
  21. Стрелец В. Б., Гарах Ж. В., Новотоцкий-Власов В. Ю. Сравнительное исследование гамма-ритма в норме, при экзаменационном стрессе и у больных с первым приступом депрессии // Журнал высшей нервной деятельности им. И. П. Павлова. 2006. Т. 56, № 2. С. 219-227.
  22. Стрелец В. Б., Данилова Н. Н., Корнилова И. В. Ритмы ЭЭГ и психологические показатели эмоций при реактивной депрессии // Журнал высшей нервной деятельности. 1997. Т. 47, № 1. С. 11-21.
  23. Стрелец В. Б., Иваницкий А. М., Арцеулова О. К. Динамика нейрофизиологических показателей при реактивной (ситуационной) и эндогенной депрессии // Физиология человека. 1994. Т. 20, № 6. С. 64-74.
  24. Стрелец В. Б., Иваницкий А. М., Иваницкий Г. А. Нарушение организации корковых процессов при депрессии // Журнал высшей нервной деятельности. 1996. Т. 46, № 2. С. 241.
  25. Balconi M., Mazza G. Brain oscillations and BIS/ BAS (behavioral inhibition/activation system) effects on processing masked emotional cues. ERS/ERD and coherence measures of alpha band // Int. J. Psychophysiology. 2009. Vol. 74. P. 158-165.
  26. Balconi M., Pozzoli U. Arousal effect on emotional face comprehension: frequency band changes in different time intervals // Physiol. Behav. 2009. Vol. 97, N 3-4. P. 455-462.
  27. Bratsas C., Papadelis C., Konstantinidis E., Pappas C. Towards emotion aware computing: An integrated approachusing multi-channel neurophysiological recordings and affective visual stimuli // IEEE Trans. Inf. Technol. Biomed. 2010. Vol. 14, N 3. P. 589-597.
  28. Esslen M., Pascual-Marqui R. D., Hell D. et al. Brain areas and time course of emotional processing // Neuroimage. 2004. Vol. 21, N 4. P. 1 189-1203.
  29. Fernandez et al. Increased occipital delta dipole density in major depressive disorder determined by magnetoencephalography // J. Psychiatry Neurosci. 2005. Vol. 30, N 1. P. 17-23.
  30. Fingelkurts An. A., Fingelkurts Al. A., Rytsala H. et al. Composition of brain oscillations in ongoing EEG during major depression disorder // Neurosci. Res. 2006. Vol. 56, N 2. P. 133-144.
  31. Fitzgerald P. B., Laird A. R., Maller J., Daskalakis Z. J. A meta-analytic study of changes in brain activation in depression // Hum Brain Mapp. 2008. Vol. 29 (6). P. 683-695.
  32. Grin-Yatsenko V. A., Baas I., Ponomarev V. A., Kropotov Y. EEG power spectra at early stages of depressive disorders // J. Clin. Neurophysiology. 2009. Vol. 26, N 6. P. 401-406.
  33. Hinrikus H., Suhhova A., Bachmann M. et al. Spectral features of EEG in depression // Biomed. Tech. 2010. Vol. 55. P. 155-161.
  34. Jausovec N., Jausovec K. Differences in induced gamma and upper alpha oscillations in the human brain related to verbal/performance and emotional intelligence // Int. J. Psychophysiol. 2005. Vol. 56. P. 223-235.
  35. Kanda P. A. M., Anghinah R., Smidt M. T., Silva J. M. The clinical use of quantitative EEG in cognitive disorders // Dementia & Neuropsychologia. 2009. Vol. 3, N 3. P. 195-203.
  36. Kessler R. C., Berglund P., Demler O. et al. National Comorbidity Survey Replication. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R) // JAMA 2003. Vol. 289. P. 3095-3105.
  37. Knott V., Mahoney C., Kennedy S., Evans K. EEG power, frequency, asymmetry and coherence in male depression // Psychiatry Res. 2001. Vol. 106. P. 123-140.
  38. Knyazev G. G. Motivation emotion and their inhibitory control mirrored in brain oscillations // Neurosci. Biobehav. Rev. 2007. Vol. 31. P. 377-395.
  39. Knyazev G. G., Slobodskoj-Plusnin J. Y., Bocharov A. V. Event-related delta and theta synchronization during explicit and implicit emotion processing // Neurosci. 2009. Vol. 164. P. 1588-1600.
  40. Mathersul D., Williams L. M., Hopkinson P. J., Kemp A. H. Investigating models of affect : relationships among EEG alpha asymmetry, depression and anxiety // J Biol Psychol. 2008. Vol. 80. P. 560-572.
  41. Papousek I., Schulte G. Associations between EEG asymmetries and electrodermal lability in low versus high depressive and anxious normal individuals // Int J Psychophysiol. 2001. N 34. P. 1 - 12.
  42. Paquette V., Beauregard M., Beaulieu-Prevost D. Effect of a psychoneurotherapy on brain electromagnetic tomography in individuals with major depressive disorder // Psychiatry Res. 2009. Vol. 30, N 3. P. 231-239.
  43. Rao U., Hammen C. L., Poland R. E. Risk markers for depression in adolescents: sleep and HPA measures // Neuropsychopharmacology. 2009. Vol. 34, N 8. P. 1936-1945.
  44. Rigucci S., Serafini G., Pompili M., Kotzalidis G. D., Tatarelli R. Anatomical and functional correlates in major depressive disorder: the contribution of neuroimaging studies // World J Biol Psychiatry. 2010. Vol. 11 (2 Pt 2). P. 165-180.
  45. Saletu B., Anderer P., Saletu-Zyhlarz G. M. EEG topography and tomography (LORETA) in diagnosis and pharmacotherapy of depression // Clin. EEG Neurosci. 2010. Vol. 41, N 4. P. 203-210.
  46. The value of quantitative electroencephalography in clinical psychiatry: A Report by the Committee on Research of the American Neuropsychiatric Association // J. Neuropsychiatry Clin. Neurosci. 2006. Vol. 18. P. 460-500.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Экология человека, 2019


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».