重组因子VIIa和外源性纤维蛋白单体系统的应用于肝素化和创伤后失血实验模型中的止血效果比较分析
- 作者: Vdovin V.M.1, Shakhmatov I.I.1, Lycheva N.A.1, Subbotin E.А.1, Momot A.P.1,2
-
隶属关系:
- Altai State Medical University
- National Medical Research Center of Hematology
- 期: 卷 26, 编号 4 (2024)
- 页面: 569-578
- 栏目: Original Study Article
- URL: https://bakhtiniada.ru/1682-7392/article/view/285205
- DOI: https://doi.org/10.17816/brmma635130
- ID: 285205
如何引用文章
详细
本文介绍了重组因子VIIa对肝素凝血病和创伤后出血模型系统的止血作用研究结果,并与使用外源性纤维蛋白单体进行了比较。 在兔子模型中,通过在受伤前15分钟静脉注射一次剂量为150单位/kg的非分馏肝素再现凝血病。使用剂量为270μg/kg的重组因子VIIa或者剂量为0.25mg/kg的纤维蛋白单体作为系统的止血剂。用药1小时后,模拟标准肝损伤,随后评估伤口失血的性质。使用旋转血栓弹力仪和凝血图评估动物静脉血的凝血时间、α角、血块形成时间、最大血块硬度和第10 分钟时的血块密度;还测定了活化部分凝血活酶时间、凝血酶原时间、凝血酶时间和纤维蛋白原浓度。由于药物引起的凝血病,与对照组相比,观察到低凝血位移,并伴有严重失血(1.9倍,p = 0.028)和动物高死亡率(26.1%,p = 0.022)。预防性使用纤维蛋白单体或重组因子 VIIa可减少创伤后失血量(分别为5.4倍,p < 0.001和2.1倍,p = 0.009),从而降低死亡率。同时,根据止血系统指标和血栓弹性测定数据,采用这些药物并不能弥补明显的低凝状态。所获得的数据表明,这两种制剂都具有止血效果,而纤维蛋白单体的止血效果更为明显,这也为考虑在创伤相关出血中使用低剂量纤维蛋白单体的前景可能性做出额外贡献。纤维蛋白单体的作用机制需要进一步研究。由此可见,从血浆中提取的纤维蛋白原衍生物,即纤维蛋白单体,可以与已知的系统的止血剂一样,作为控制伤口失血的候选药物。
作者简介
Vyacheslav M. Vdovin
Altai State Medical University
Email: erytrab@gmail.com
ORCID iD: 0000-0002-4606-3627
SPIN 代码: 5885-4504
MD, Cand. Sci. (Medicine), associate professor
俄罗斯联邦, BarnaulIgor I. Shakhmatov
Altai State Medical University
Email: iish59@yandex.ru
ORCID iD: 0000-0002-0979-8560
SPIN 代码: 1574-4980
MD, Dr. Sci. (Medicine), professor
俄罗斯联邦, BarnaulNatalya A. Lycheva
Altai State Medical University
Email: natalia.lycheva@yandex.ru
ORCID iD: 0000-0002-5842-5728
SPIN 代码: 7646-0875
Cand. Sci. (Biology), assistant professor
俄罗斯联邦, BarnaulEvgeniy А. Subbotin
Altai State Medical University
Email: subbotin70@bk.ru
ORCID iD: 0000-0001-5850-0233
SPIN 代码: 7244-5998
MD, Cand. Sci. (Medicine), associate professor
俄罗斯联邦, BarnaulAndrey P. Momot
Altai State Medical University; National Medical Research Center of Hematology
编辑信件的主要联系方式.
Email: xyzan@yandex.ru
ORCID iD: 0000-0002-8413-5484
SPIN 代码: 8464-9030
MD, Dr. Sci. (Medicine), professor, Altai Branch
俄罗斯联邦, Barnaul; Barnaul参考
- Cap A, Hunt BJ. The pathogenesis of traumatic coagulopathy. Anaesthesia. 2015;70(Suppl. 1):96–101. doi: 10.1111/anae.12914
- Heckbert SR, Vedder NB, Hoffman W, et al. Outcome after hemorrhagic shock in trauma patients. J Trauma. 1998;45(3): 545–549. doi: 10.1097/00005373-199809000-00022
- Karkouki K, Wijeysundera DN, Yau TM, et al. The independent association of massive blood loss with mortality in cardiac surgery. Transfusion. 2004;44(10):1453–1462. doi: 10.1111/j.1537-2995.2004.04144.x
- Lloyd L, Jenkins PV, Bell SF, et al. Acute obstetric coagulopathy during postpartum hemorrhage is caused by hyperfibrinolysis and dysfibrinogenemia: an observational cohort study. J Thromb Haemost. 2023;21(4):862–879. doi: 10.1016/j.jtha.2022.11.036
- Ageno W, Donadini M. Breadth of complications of long-term oral anticoagulant care. Hematology Am Soc Hematol Educ Program. 2018;30(1):432–438. doi: 10.1182/asheducation-2018.1.432
- Pohlman TH, Fecher AM, Arreola-Garcia C. Optimizing transfusion strategies in damage control resuscitation: current insights. J Blood Med. 2018;9:117–133. doi: 10.2147/JBM.S165394
- Melnik AA. Mechanism of action of haemostatic drugs. Medical and Pharmacy News. 2017;622(10):1–17. (In Russ.)
- Rossaint R, Afshari A, Bouillon B, et al. The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition. Crit Care. 2023;27(1):80. doi: 10.1186/s13054-023-04327-7
- Köhler M. Thrombogenicity of prothrombin complex concentrates. Thromb Res. 1999;95(4 Suppl 1):S13–S17. doi: 10.1016/s0049-3848(99)00079-1
- Hoffman M, Monroe DM. Coagulation 2006: a modern view of hemostasis. Hematol Oncol Clin North Am. 2007;21(1):1–11. doi: 10.1016/j.hoc.2006.11.004
- Butylin AA, Panteleev MA, Ataullahanov FI. Spatial dynamics of blood coagulation. Rossijskij Himicheskij Zhurnal. 2007;51(1):45–50. (In Russ.) EDN: HZYZAN
- Momot AP, Vdovin VM, Momot DA, et al. New opportunities to reduce blood loss with systemic administration of low-dose fibrin monomer. Clinical Physiology of Circulation. 2019;16(4):267–73. (In Russ.) EDN: JFCAAS doi: 10.24022/1814-6910-2019-16-4-267-273
- Zhiburt EB, Madzaev SR, Klyueva EA. Recombinant activated factor VII in stopping bleeding on the background of antithrombotic therapy. Effective pharmacotherapy. Anaesthesiology and reanimatology. 2014;(1):12–18. (In Russ.)
- Nekhaev IV, Prikhodchenko AO, Zhuzhginova OV, et al. Recombinant factor VIIA in intensive care. Russian Journal of Hematology and Transfusiology. 2015;60(2):32–39. (In Russ.) EDN: TXKIRH
- Khabriev RU. Guidelines for experimental (preclinical) study of new pharmacological substances. 2-nd ed. Moscow. Meditsina; 2005. 826 р. (In Russ.) EDN: QCIIOB
- Lisman T, Groot PhGD Mechanism of action of recombinant factor VIIa. J Thromb Haemost. 2003;1(6):1138–1139. doi: 10.1046/j.1538-7836.2003.00225.x
- Das K, Keshava S, Ansari SA, et al. Factor VIIa induces extracellular vesicles from the endothelium: a potential mechanism for its hemostatic effect. Blood. 2021;137(24):3428–3442. doi: 10.1182/blood.2020008417
- Momot AP, Vdovin VM, Orekhov DA, et al. Prevention of massive intraoperative bleedings associated with heparin with the systemic use of fibrin monomer in the experiment. Patological Physiology and Experimental Therapy. 2019;63(4):48–55. EDN: NXWNDC doi: 10.25557/0031-2991.2019.04.48-55
- Lempert АR, Belozerskaya GG, Makarov VА, et. al. Hemostatic activity of new fibrin-monomer based compound upon intravenous injection in experiment. Experimental and Clinical Pharmacology. 2018;81(11):14–17. EDN: VNUIMU doi: 10.30906/0869-2092-2018-81-11-14-17
- Vdovin VM, Momot AP, Orehov DA, et al. Influence of exogenous fibrin monomer on hemostatic potential and formation of fibrin in the area of dosed liver injury in experiment. Russian Journal of Physiology. 2020;106(9):1132–1143. EDN: BYAZIN doi: 10.31857/S0869813920070092
补充文件
