Dynamics of aquaporin content in the aero-hematic barrier during the latent phase of toxic pulmonary edema

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study evaluates the dynamics of aquaporin (aquaporin-1, aquaporin-5, and epithelial sodium channel) content in the aero-hematic barrier during the latent phase of rat intoxication with carbonyl chloride (phosgene), thermal decomposition products of fluoroplast containing perfluoroisobutylene, and nitrogen dioxide. Rat intoxication was modeled using average lethal concentrations of these toxic substances. At 30 and 60 minutes post-exposure, pulmonary coefficient was measured and histological and immunohistochemical studies were performed. Western blot analysis was used to determine the aquaporin-5 content in rat lung tissues exposed to the thermal decomposition products of fluoroplast. It was found that rat intoxication with phosgene and thermal decomposition products of fluoroplast containing perfluoroisobutylene led to an increase in the relative content of aquaporin-5 and epithelial sodium channel-positive cells in lung tissues as early as 30 minutes post-exposure. At 60 minutes post-exposure, there were signs of the interstitial phase of toxic pulmonary edema and an increase in the pulmonary coefficient. Exposure to nitrogen dioxide resulted in an increase in the pulmonary coefficient and the relative content of aquaporin-5-positive cells, as well as pronounced signs of the interstitial phase of edema 30 minutes post-exposure. Western blot analysis using anti-aquaporin-5 antibodies revealed an increase in the staining intensity of complexes with molecular weights of 25 and 50 kDa, suggesting the formation of aquaporin-5 tetramers and their likely translocation from the intracellular compartment to the plasma membrane of alveolar cells. These findings indicate that aquaporin-5 plays an important role in the pathogenesis of toxic pulmonary edema induced by the studied pneumotoxicants. Targeting these molecules may be a promising approach for pathogenetic therapy of poisoning.

About the authors

Daria T. Sizova

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-7426-1746
SPIN-code: 2769-5930

applicant

Russian Federation, Saint Petersburg

Pavel G. Tolkach

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-5013-2923
SPIN-code: 4304-1890

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Alexander A. Bardin

Scientific Research Institute of Hygiene, Occupational Pathology and Human Ecology

Author for correspondence.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-5551-1815
SPIN-code: 9987-7872

researcher
Russian Federation, Kuzmolovskoye

Vladimir N. Babakov

Scientific Research Institute of Hygiene, Occupational Pathology and Human Ecology; Saint Petersburg State Pediatric Medical University

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-8824-8929
Scopus Author ID: 6602180814

Cand. Sci. (Biology)

Russian Federation, Kuzmolovskoye; Saint Petersburg

Nikolay G. Vengerovich

State Research and Testing Institute of Military Medicine

Email: gniiiivm_5@mil.ru
ORCID iD: 0000-0003-3219-341X
SPIN-code: 6690-9649
Scopus Author ID: 55639823300

MD, Dr. Sci. (Medicine), associate professor

Russian Federation, Saint-Petersburg

Sergey V. Chepur

State Scientific-Research Test Institute of Military Medicine

Email: gniiiivm_5@mil.ru
ORCID iD: 0000-0002-5324-512X
SPIN-code: 3828-6730

MD, Dr. Sci. (Medicine), professor

Russian Federation, Saint Petersburg

Vadim A. Basharin

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-8548-6836
SPIN-code: 4671-8386

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

References

  1. Basharin VA, Chepur SV, Shchegolev AV, et al. The role and place of respiratory support in the treatment regimens for acute pulmonary edema caused by inhalation of toxic substances. Military Medical Journal. 2019;340(11):26–32. (In Russ.) EDN: JPJONV
  2. Shapovalov ID, Yaroshenko DM; Tolkach PG, et al. Experimental evaluation of the effectiveness of oxygen and prednisolone for the correction of toxic pulmonary edema caused by intoxication by thermal-destruction products of nitrocellulose. Medline.ru. 2024;25(1):205–219. EDN: BWCVDB
  3. Patocka J. Perfluoroisobutene: poisonous choking gas. Mil Med Sci Lett. 2019;88(3):98–105. doi: 10.31482/mmsl.2019.006
  4. Jugg BJ. Toxicology and treatment of phosgene induced lung injury. In: Chemical Warfare Toxicology. Fundamental Aspects. Edition: 1. Chapter: 4. Publisher: RSC. Worek F, Jener J, Thiermann H, eds. 2016;1:117–153. doi: 10.1039/9781782622413-00117
  5. Berthiaume Y, Folkesson HG, Matthay MA. Lung edema clearance: 20 years of progress: invited review: alveolar edema fluid clearance in the injured lung. J Appl Physiol (1985). 2002;93(6):2207–2213. doi: 10.1152/japplphysiol.01201.2001
  6. Skowronska A, Tanski D, Jaskiewicz L, Skowronski MT. Modulation by steroid hormones and other factors on the expression of aquaporin-1 and aquaporin-5. Vitam Horm. 2020;112;209–242. doi: 10.1016/bs.vh.2019.08.006
  7. Zeuthen T. General models for water transport across leaky epithelia. Int Rev Cytol. 2002;215;285–317. doi: 10.1016/s0074-7696(02)15013-3
  8. Berthiaume Y, Matthay MA. Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol. 2007;159(3):350–359. doi: 10.1016/j.resp.2007.05.010
  9. King L, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Phpiol. 1996;58:619–648. doi: 10.1146/annurev.ph.58.030196.003155
  10. Ohinata A, Nagai K, Nomura J, et al. Lipopolysaccharide changes the subcellular distribution of aquaporin 5 and increases plasma membrane water permeability in mouse lung epithelial cells. Biochem Biophys Res Commun. 2005;326(3):521–526. doi: 10.1016/j.bbrc.2004.10.216
  11. Sugita M, Ferraro P, Dagenais A, et al. Alveolar liquid clearance and sodium channel expression are decreased in transplanted canine lungs. Am J Respir Crit Care Med. 2003;167(10):1440–1450. doi: 10.1164/rccm.200204-312OC
  12. Hasan B, Li FS, Siyit A, et al. Expression of aquaporins in the lungs of mice with acute injury caused by LPS treatment. Respir Physiol Neurobiol. 2014;200:40–45. doi: 10.1016/j.resp.2014.05.008
  13. Ishibashi H, Suzuki S, Moriya T, et al. Sex steroid hormone receptors in human thymoma. J Clin Endocrinol Metab. 2003:88(5):2309–2317. doi: 10.1210/jc.2002-021353
  14. Cai-Zhi S, Hua Sh, Xiao-Wei H, et al. Effect of dobutamine on lung aquaporin 5 in endotoxine shockinduced acute lung injury rabbit. J Thorac Dis. 2015;7(8):1467–1477. doi: 10.3978/j.issn.2072-1439.2015.08.22
  15. Tolkach PG, Basharin VA, Chepur SV, et al. Ultrastructural changes in the air-blood barrier of rats in acute intoxication with furoplast pyrolysis products. Bulletin of Experimental Biology and Medicine. 2020;169(2):235–241. (In Russ.) EDN: USZBXQ doi: 10.1007/s10517-020-04866-x
  16. Tiunov LA, Golovenko NYa, Galkin BN, Barinov VA. Biochemical mechanisms of toxicity of nitrogen oxides. Biology Bulletin Reviews. 1991;111(5):738–750. (In Russ.) doi: 10.1007/s10540-005-2577-2
  17. Agre P. Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed. 2004;43(33):4278–4290. doi: 10.1007/s10540-005-2577-2
  18. Agre P. The aquaporin water channels. Proc Am Thorac Soc. 2006;3:5–13. doi: 10.1513/pats.200510-109JH
  19. Sorbo JG, Moe SE, Holen T. Early upregulation in nasal epithelium and strong expression in olfactory bulb glomeruli suggest a role for Aquaporin-4 in olfaction. FEBS Lett. 2007;581(25):4884–4890. doi: 10.1016/j.febslet.2007.09.018
  20. Alam J, Jeon S, Choi Y. Determination of Anti-aquaporin 5 autoantibodies by immunofluorescence cytochemistry. Methods Mol Biol. 2019;1901:79–87. doi: 10.1007/978-1-4939-8949-2_6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of the pulmonary coefficient in rats exposed to thermal decomposition products of fluoroplast at different times

Download (194KB)
3. Fig. 2. Dynamics of pulmonary interstitial edema in rats from the perfluoroisobutylene, COCl2, and NO2 groups exposed to thermal decomposition products of fluoroplast at different times. Hematoxylin/eosin staining; magnification: ×50 ocular

Download (1MB)
4. Fig. 3. Lung content of aquaporin-5-positive cells in rats from the perfluoroisobutylene, COCl2, and NO2 groups exposed to thermal decomposition products of fluoroplast at different times

Download (219KB)
5. Fig. 4. Accumulation of aquaporin-5-associated immune complexes with peroxidase stained with diaminobenzidine in lung tissues of rats from the perfluoroisobutylene, COCl2, and NO2 groups exposed to thermal decomposition products of fluoroplast at different times. Magnification: ×100 ocular

Download (1MB)
6. Fig. 5. Lung content of aquaporin-1-positive cells in rats from the perfluoroisobutylene, COCl2, and NO2 groups exposed to thermal decomposition products of fluoroplast at different times

Download (262KB)
7. Fig. 6. Lung content of ENaC-positive cells in rats from the perfluoroisobutylene, COCl2, and NO2 groups exposed to thermal decomposition products of fluoroplast at different times

Download (243KB)
8. Fig. 7. Western blot analysis of aquaporin-5 content in homogenized lung tissues of rats from the perfluoroisobutylene group obtained 30 and 60 minutes post-exposure to thermal decomposition products of fluoroplast

Download (164KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).