Определение внутренней структурной неоднородности природного алмаза: методические аспекты использования конфокальной спектроскопии комбинационного рассеяния света с анализом поляризации

Обложка

Цитировать

Полный текст

Аннотация

Цель. В работе представлено описание методических приемов исследования внутренней структурной неоднородности кристаллов природного алмаза, основанных на использовании конфокальной спектроскопии комбинационного рассеяния света с анализом поляризации, в том числе с угловым разрешением, при высоком спектральном (0.5–0.6 см–1) и пространственном (1 мкм) разрешении. Результаты. Параметры колебательной моды F2g в алмазе (положение, ширина, интенсивность, форма, в том числе доля гауссова и лоренцева вкладов в уширение) определяются суперпозиционным влиянием ряда факторов, в числе которых тип и содержание структурных напряжений, деформаций, различных типов дефектов, а также ориентировка кристаллографических осей кристалла относительно направлений падающего и рассеянного лучей и направлений их электрических векторов поляризации. Реализованная аналитическая процедура включает в себя следующее: 1) анализ кристаллографической ориентировки образца в системе координат спектрометра и возможных разориентировок его фрагментов с погрешностью ≈8–15°; 2) визуализацию распределения структурных напряжений, деформаций, двойников, примесных дефектов и их ассоциатов на основе картирования поверхности образцов по спектральным параметрам колебательной моды F2g; 3) получение статистических характеристик внутренней структурной неоднородности образцов на основе диаграмм частоты встречаемости спектральных параметров при их статистически значимом количестве (≈103): унимодальности (уни-, бимодальные распределения), ширины распределений (от ≈0.1 до ≈0.6 см–1 для FWHMcorr и от ≈0.04 до ≈0.6 см–1 для положения линии). Апробация методических приемов выполнена на примере двух синтетических CVD монокристаллов алмаза, допированных азотом и бором; возможность типизации природных образцов по статистическим характеристикам внутренней неоднородности рассмотрена на примере образцов из кимберлитовых трубок Якутии и из россыпей Западного Приуралья. Выводы. Отработан ряд методических приемов определения внутренней структурной неоднородности кристаллов природного алмаза, основанных на конфокальной спектроскопии комбинационного рассеяния света с анализом поляризации, и показана возможность использования статистических характеристик неоднородности в качестве одного из типоморфных признаков коренного источника алмазов; предложенные диаграммы перспективно использовать для сопоставления и типизации образцов.

Об авторах

Л. И. Богданова

Институт геологии и геохимии им. академика А.Н. Заварицкого УрО РАН

Email: bogdanovalouisa@gmail.com

Ю. В. Щапова

Институт геологии и геохимии им. академика А.Н. Заварицкого УрО РАН

Л. Я. Сушанек

Институт геологии и геохимии им. академика А.Н. Заварицкого УрО РАН

Е. А. Васильев

Санкт-Петербургский горный университет императрицы Екатерины II

С. Л. Вотяков

Институт геологии и геохимии им. академика А.Н. Заварицкого УрО РАН

Список литературы

  1. Богданова Л.И., Щапова Ю.В. (2023) Свидетельство о государственной регистрации программы № 2023668438 от 28 августа 2023 г., правообладатель Федеральное государственное бюджетное учреждение науки Институт геологии и геохимии им. академика А.Н. Заварицкого Уральского отделения Российской академии наук.
  2. Бокий Г.Б., Безруков Г.Н., Клюев Ю.А., Налетов А.М., Непша В.И. (1986) Природные и синтетические алмазы. М.: Наука, 224 с.
  3. Булатов В.А., Щапова Ю.В., Замятин Д.А., Сушанек Л.Я., Каменецких А.С., Вотяков С.Л. (2023) Анализ химического состава и структуры пленок сложных оксидов микронной толщины методами электронно-зондового микроанализа и конфокальной спектроскопии комбинационного рассеяния света (на примере пленки MgAl2O4 на SiO2). Журн. аналитич. химии, 78(12), 1106-1118. https://doi.org/10.31857/S0044450223120034
  4. Минералы-концентраторы d- и f-элементов: локальные спектроскопические и ЛА-ИСП-МС исследования состава, структуры и свойств, геохронологические приложения. (2020) (Ю.В. Щапова, С.Л. Вотяков, Д.А. Замятин, М.В. червяковская, Е.А. Панкрушина. Под ред. С.Л. Вотякова). Новосибирск: Изд-во СО РАН, 424 с.
  5. Afanasiev V., Ugapeva S., Babich Y., Sonin V., Logvinova A., Yelisseyev A., Goryainov S., Agashev A., Ivanova O. (2022) Growth. Story of One Diamond: A Window to the Lithospheric Mantle. Minerals, 12, 1048. https://doi.org/10.3390/min12081048
  6. Bensalah H., Stenger I., Sakr G., Barjon J., Bachelet R., Tallaire A., Achard J., Vaissiere N., Lee K.H., Saada S., Arnault J.C. (2016) Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium. Diamond Relat. Mater., 66, 188-195. https://doi.org/10.1016/j.diamond.2016.04.006
  7. Blank V.D., Denisov V.N., Kirichenko A.N., Kuznetsov M.S., Mavrin B.N., Nosukhin S.A., Terentiev S.A. (2008) Raman scattering by defect-induced excitations in boron-doped diamond single crystals. Diamond Relat. Mater., 17, 1840-1843. https://doi.org/10.1016/j.diamond.2008.07.004
  8. Cerdeira F., Buchenauer C.J., Pollak F.H., Cardona M. (1972) Stress-induced shifts of first-order Raman frequencies of diamond-and zinc-blende-type semiconductors. Phys. Rev. B, 5, 580-593. https://doi.org/10.1103/PhysRevB.5.580
  9. Crisci A., Baillet F., Mermoux M., Bogdan G., Nesládek M., Haenen K. (2011) Residual strain around grown-in defects in CVD diamond single crystals: A 2D and 3D Raman imaging study. Phys. Status Solidi (А), 208(9), 2038-2044. https://doi.org/10.1002/pssa.201100039
  10. Christian J.W., Mahajan S. (1995) Deformation twinning. Progr. Mater. Sci., 39, 1-157. https://doi.org/10.1016/0079-6425(94)00007-7
  11. Di Liscia E.J., Álvarez F., Burgos E., Halac E.B., Huck H., Reinoso M. (2013) Stress Analysis on Single-Crystal Diamonds by Raman Spectroscopy 3D Mapping. Mater. Sci. Appl., 4, 191-197. https://doi.org/10.4236/msa.2013.43023
  12. Feng Z.B., Chayahara A., Mokuno Y., Yamada H., Shikata S. (2010) Raman spectra of a cross section of a large single crystal diamond synthesized by using microwave plasma CVD. Diamond Relat. Mater., 19, 171-173. https://doi.org/10.1016/j.diamond.2009.10.002
  13. Green B.L., Collins A.T., Breeding C.M. (2022) Diamond Spectroscopy, Defect Centers, Color, and Treatments. Rev. Miner. Geochem., 88, 637-688. http://dx.doi.org/10.2138/rmg.2022.88.12
  14. Grimsditch M.H., Anastassakis E., Cardona M. (1978) Effect of uniaxial stress on the zone-center optical phonon of diamond. Phys. Rev. B, 18, 901-904. https://doi.org/10.1103/PhysRevB.18.901
  15. Hanzawa H., Umemura N., Nisida Y., Kanda H., Okada M., Kobayashi M. (1996) Disorder effects of nitrogen impurities, irradiation-induced defects, and 13 C isotope composition on the Raman spectrum in synthetic Ib diamond. Phys. Rev. B, 54, 3793-3799. https://doi.org/10.1103/physrevb.54.3793.
  16. Howell D., Fisнer D., Piazolo S., Griffin W.L., Sibley S.J. (2015) Pink color in Type I diamonds: Is deformation twinning the cause? Amer. Miner., 100, 1518-1527. https://doi.org/10.2138/am-2015-5044
  17. Ichikawa K., Shimaoka T., Kato Y., Koizumi S., Teraji T. (2020) Dislocations in chemical vapor deposition diamond layer detected by confocal Raman imaging, J. Appl. Phys., 128, 155302. https://doi.org/10.1063/5.0021076
  18. Izraeli E.S., Harris J.W., Navon O. (1999) Raman barometry of diamond formation. Earth Planet. Sci. Lett., 173, 351-360. https://doi.org/10.1016/S0012-821X(99)00235-6
  19. Jain V., Biesinger M.C., Linford M.R. (2018) The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) Functions in the Context of Peak Fitting X-ray Photo-electron Spectroscopy (XPS) Narrow Scans. Appl. Surf. Sci., 34. https://doi.org/10.1016/j.apsusc.2018.03.190
  20. Jasbeer H., Williams R.J., Kitzler O., McKay A., Sarang S., Lin J., Mildren R.P. (2016) Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance. J. Optic. Soc. Amer. B, 33(3), B56-B64. https://doi.org/10.1364/JOSAB.33.000B56
  21. Kagi H., Odake S., Fukura S., Zedgenizov D.A. (2009) Raman spectroscopic estimation of depth of diamond origin: technical developments and the application. Russ. Geol. Geophys., 50, 1183-1187. https://doi.org/10.1016/j.rgg.2009.11.016
  22. Lang A.R., Moore M., Makepeace A.P.W., Wierzchowski W., Welbourn C.M. (1991) On the dilatation of synthetic type Ib diamond by substitutional nitrogen impurity. Philos. Trans. R. Soc. Lond. A, 337, 497-520. https://doi.org/10.1098/rsta.1991.0135
  23. Loudon R. (2001) The Raman Effect in Crystals. Adv. Phys., 50, 813-864.
  24. Major G., Fernandez V., Fairley N., Linford M. (2022) A detailed view of the Gaussian–Lorentzian sum and product functions and their comparison with the Voigt function. Surf. Interf. Anal., 54(3), 262-269. https://doi.org/10.1002/sia.7050
  25. Mortet V., Gregora I., Taylor A., Lambert N., Ashcheulov P., Gedeonova Z., Hubik P. (2020) New perspectives for heavily boron-doped diamond Raman spectrum analysis. Carbon, 168, 319-327. https://doi.org/10.1016/j.carbon.2020.06.075
  26. Mossbrucker J., Grotjohn T.A. (1996) Determination of local crystal orientation of diamond using polarized Raman spectra. Diamond Relat. Mater., 5, 1333-1343. https://doi.org/10.1016/0925-9635(96)00547-X
  27. Nasdala L., Brenker F.E., Glinnemann J., Hofmeister W., Gasparik T., Harris J.W., Tachel T., Reese I. (2003) Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds. Eur. J. Mineral., 15, 931-935. https://doi.org/10.1127/0935-1221/2003/0015-0931
  28. Nasdala L., Hofmeister W., Harris J.W., Glinnemann J. (2005) Growth zoning and strain patterns inside diamond crystals as revealed by Raman maps. Amer. Miner., 90, 745-748. https://doi.org/10.2138/am.2005.1690
  29. Nugent K.W., Prawer S. (1998) Confocal Raman strain mapping of isolated single CVD diamond crystals. Diamond Relat. Mater., 7(2-5), 215-221. https://doi.org/10.1016/s0925-9635(97)00212-4
  30. Prawer S., Nemanich R.J. (2004) Raman spectroscopy of diamond and doped diamond. Philos. Trans. R. Soc. Lond. A, 362, 2537-2565. https://doi.org/10.1098/rsta.2004.1451
  31. Ramabadran U., Roughani B. (2018) Intensity analysis of polarized Raman spectra for off axis single crystal silicon. Mater. Sci. Eng.: B. 230, 31-42. https://doi.org/10.1016/j.mseb.2017.12.040
  32. Srimongkon K., Ohmagari S., Kato Y., Amornkitbamrung V., Shikata S. (2016) Boron inhomogeneity of HPHT-grown single-crystal diamond substrates: Confocal micro-Raman mapping investigations. Diamond Relat. Mater., 63, 21-25. https://doi.org/10.1016/j.diamond.2015.09.014
  33. Steele J.A., Puech P., Lewis R.A. (2016) Polarized Raman backscattering selection rules for (hhl)-oriented diamond- and zincblende-type crystals. J. Appl. Phys., 120(5), 055701. https://doi.org/10.1063/1.4959824
  34. Stuart S.-A., Prawer S., Weiser P.S. (1993) Variation of the raman diamond line shape with crystallographic orientation of isolated chemical-vapour-deposited diamond crystals. Diamond Relat. Mater., 2(5-7), 753-757. https://doi.org/10.1016/0925-9635(93)90217-p
  35. Surovtsev N.V., Kupriyanov I.N. (2015) Temperature dependence of the Raman line width in diamond: Revisited. J. Raman Spectrosc., 46, 171-176. https://doi.org/10.1002/jrs.4604
  36. Surovtsev N.V., Kupriyanov I.N. (2017) Effect of Nitrogen Impurities on the Raman Line Width in Diamond. Revisited Cryst., 7, 239. https://doi.org/10.3390/cryst7080239
  37. Surovtsev N.V., Kupriyanov I.N., Malinovsky V.K., Gusev V.A., Pal’yanov Y.N. (1999) Effect of nitrogen impurities on the Raman line width in diamonds. J. Phys. Con-dens. Matter., 11, 4767-4774. https://doi.org/10.3390/cryst7080239
  38. Takeuchi M., Yasuoka M., Ishii M., Ohtani N., Shikata S. (2023) Analysis of diamond dislocations by Raman polarization measurement. Diamond Relat. Mater., 140, 110510. https://doi.org/10.1016/j.diamond.2023.110510
  39. Tesar K., Gregora I., Beresova P., Vanek P., Оndrejkovic P., Hlinka J. (2019) Raman scattering yields cubic crystal grain orientation. Sci. Rep., 9, 9385. https://doi.org/10.1038/s41598-019-45782-z
  40. Tomlinson E.L., Howell D., Jones A.P., Frost D.J. (2011) Characteristics of HPHT diamond grown at sub-lithosphere conditions (10-20 GPa). Diamond Relat. Mater., 20, 11-17. https://doi.org/10.1016/j.diamond.2010.10.002
  41. Váczi T. (2014) A new, simple approximation for the deconvolution of instrumental broadening in spectroscopic band profiles. Appl. Spectrosc., 68(11), 1274-8. https://doi.org/10.1366/13-07275
  42. Vasilev E.A., Klepikov I.V., Lukianova L.I. (2019) Comparison of Diamonds from the Rassolninskaya Depression and Modern Alluvial Placers of the Krasnovishersky District (Ural Region). Geol. Ore Depos., 61, 598-605. https://doi.org/10.1134/S1075701519070134
  43. Vasilev E.A., Kudriavtsev A.A., Klepikov I.V., Antonov A.V. (2023) Diversity of the Structure of Diamond Crystals and Aggregates: Electron Backscatter Diffraction Data. Geol. Ore Depos., 65, 743-753. https://doi.org/10.1134/S1075701523070140
  44. Vhareta M., Erasmus R.M., Comins J.D. (2020) Micro-Raman and X-ray diffraction stress analysis of residual stresses in fatigue loaded leached polycrystalline diamond discs. Int. J. Refract. Metals Hard Mater., 88, 105176. https://doi.org/10.1016/j.ijrmhm.2019.105176.
  45. Von Kaenel Y., Stiegler J., Michler J., Blank E. (1997) Stress distribution in heteroepitaxial chemical vapor deposited diamond films. J. Appl. Phys., 81(4), 1726-1736. https://doi.org/10.1063/1.364006
  46. Xu B., Mao N., Zhao Y., Tong L., Zhang J. (2021) Polarized Raman Spectroscopy for Determining Crystallographic Orientation of Low-Dimensional Materials. J. Phys. Chem. Lett., 12, 7442-7452. https://doi.org/10.1021/acs.jpclett.1c01889
  47. Zhong X., Loges A., Roddatis V., John T. (2021) Measurement of crystallographic orientation of quartz crystal using Raman spectroscopy: application to entrapped inclusions. Contrib. Mineral. Petrol. https://doi.org/10.1007/s00410-021-01845-x

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Богданова Л.И., Щапова Ю.В., Сушанек Л.Я., Васильев Е.А., Вотяков С.Л., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».