Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let $\mathcal{O}\subset\mathbb{R}^d$ be a bounded domain of class $C^{1,1}$. In $L_2(\mathcal{O};\mathbb{C}^n)$, we consider a selfadjoint second-order matrix elliptic differential operator $B_{N,\varepsilon}$, $0<\varepsilon\leqslant1$, under the Neumann boundary condition. The principal part of this operator is given in a factorized form. The operator includes first-order and zero-order terms. The coefficients of the operator $B_{N,\varepsilon}$ are periodic and depend on $\mathbf{x}/\varepsilon$. We study the generalized resolvent $(B_{N,\varepsilon}-\zeta Q_0(\cdot/\varepsilon))^{-1}$, where $Q_0$ is a periodic bounded and positive definite matrix-valued function, and $\zeta$ is a complex parameter. We obtain approximations of the generalized resolvent in the operator norm in $L_2(\mathcal{O};\mathbb{C}^n)$ and in the norm of operators acting from $L_2(\mathcal{O};\mathbb{C}^n)$ to the Sobolev class $H^1(\mathcal{O};\mathbb{C}^n)$, with two-parametric (with respect to $\varepsilon$ and $\zeta$) error estimates. The results are applied to study the behavior of solutions of the initial boundary value problem with the Neumann condition for the parabolic equation $Q_0(\mathbf{x} / \varepsilon) \partial_t \mathbf{u}_\varepsilon(\mathbf{x},t) = -( B_{N,\varepsilon} \mathbf{u}_\varepsilon)(\mathbf{x},t)$ in the cylinder $\mathcal{O} \times (0,T)$, where $0 < T\leqslant\infty$

作者简介

Tatiana Suslina

Saint Petersburg State University

编辑信件的主要联系方式.
Email: suslina@list.ru
Doctor of physico-mathematical sciences, Professor

参考

  1. A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publishing Co., Amsterdam–New York, 1978, xxiv+700 pp.
  2. Н. С. Бахвалов, Г. П. Панасенко, Осреднение процессов в периодических средах. Математические задачи механики композиционных материалов, Наука, М., 1984, 352 с.
  3. О. А. Олейник, Г. A. Иосифьян, A. С. Шaмaев, Мaтемaтические зaдaчи теоpии сильно неодноpодных упpугих сpед, Моск. гос. ун-т, М., 1990, 312 с.
  4. В. В. Жиков, С. М. Козлов, О. А. Олейник, Усреднение дифференциальных операторов, Физматлит, М., 1993, 464 с.
  5. T. A. Suslina, “Homogenization of the Neumann problem for elliptic systems with periodic coefficients”, SIAM J. Math. Anal., 45:6 (2013), 3453–3493
  6. Т. А. Суслина, “Усреднение эллиптических операторов с периодическими коэффициентами в зависимости от спектрального параметра”, Алгебра и анализ, 27:4 (2015), 87–166
  7. М. Ш. Бирман, Т. А. Суслина, “Периодические дифференциальные операторы второго порядка. Пороговые свойства и усреднения”, Алгебра и анализ, 15:5 (2003), 1–108
  8. М. Ш. Бирман, Т. А. Суслина, “Усреднение периодических эллиптических дифференциальных операторов с учетом корректора”, Алгебра и анализ, 17:6 (2005), 1–104
  9. M. Ш. Бирман, Т. А. Суслина, “Усреднение периодических дифференциальных операторов с учетом корректора. Приближение решений в классе Соболева $H^1(mathbb{R}^d)$”, Алгебра и анализ, 18:6 (2006), 1–130
  10. Т. А. Суслина, “Усреднение в классе Соболева $H^1(mathbb{R}^d)$ для периодических эллиптических дифференциальных операторов второго порядка при включении членов первого порядка”, Алгебра и анализ, 22:1 (2010), 108–222
  11. Т. А. Суслина, “Усреднение эллиптических систем с периодическими коэффициентами: операторные оценки погрешности в $L_2(mathbb{R}^d)$ с учетом корректора”, Алгебра и анализ, 26:4 (2014), 195–263
  12. Т. А. Суслина, “Об усреднении периодических параболических систем”, Функц. анализ и его прил., 38:4 (2004), 86–90
  13. T. A. Suslina, “Homogenization of a periodic parabolic Cauchy problem”, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 220, Adv. Math. Sci., 59, Amer. Math. Soc., Providence, RI, 2007, 201–233
  14. T. Suslina, “Homogenization of a periodic parabolic Cauchy problem in the Sobolev space $H^1(mathbb{R}^d)$”, Math. Model. Nat. Phenom., 5:4 (2010), 390–447
  15. Ю. М. Мешкова, “Усреднение задачи Коши для параболических систем с периодическими коэффициентами”, Алгебра и анализ, 25:6 (2013), 125–177
  16. В. В. Жиков, “Об операторных оценках в теории усреднения”, Докл. РАН, 403:3 (2005), 305–308
  17. В. В. Жиков, “О некоторых оценках из теории усреднения”, Докл. РАН, 406:5 (2006), 597–601
  18. V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524
  19. V. V. Zhikov, S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237
  20. В. В. Жиков, С. Е. Пастухова, “Об операторных оценках в теории усреднения”, УМН, 71:3(429) (2016), 27–122
  21. Д. И. Борисов, “Асимптотики решений эллиптических систем с быстро осциллирующими коэффициентами”, Алгебра и анализ, 20:2 (2008), 19–42
  22. N. N. Senik, “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898
  23. Sh. Moskow, M. Vogelius, “First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof”, Proc. Roy. Soc. Edinburgh Sect. A, 127:6 (1997), 1263–1299
  24. S. Moskow, M. Vogelius, First order corrections to the homogenized eigenvalues of a periodic composite medium. The case of Neumann boundary conditions, preprint, Rutgers Univ., 1997
  25. G. Griso, “Error estimate and unfolding for periodic homogenization”, Asymptot. Anal., 40:3-4 (2004), 269–286
  26. G. Griso, “Interior error estimate for periodic homogenization”, Anal. Appl. (Singap.), 4:1 (2006), 61–79
  27. C. E. Kenig, Fanghua Lin, Zhongwei Shen, “Convergence rates in $L^2$ for elliptic homogenization problems”, Arch. Ration. Mech. Anal., 203:3 (2012), 1009–1036
  28. М. А. Пахнин, Т. А. Суслина, “Операторные оценки погрешности при усреднении эллиптической задачи Дирихле в ограниченной области”, Алгебра и анализ, 24:6 (2012), 139–177
  29. T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic systems: $L_2$-operator error estimates”, Mathematika, 59:2 (2013), 463–476
  30. Qiang Xu, “Uniform regularity estimates in homogenization theory of elliptic system with lower order terms”, J. Math. Anal. Appl., 438:2 (2016), 1066–1107
  31. Qiang Xu, “Uniform regularity estimates in homogenization theory of elliptic systems with lower order terms on the Neumann boundary problem”, J. Differential Equations, 261:8 (2016), 4368–4423
  32. Qiang Xu, “Convergence rates for general elliptic homogenization problems in Lipschitz domains”, SIAM J. Math. Anal., 48:6 (2016), 3742–3788
  33. Zhongwei Shen, Periodic homogenization of elliptic systems, Oper. Theory Adv. Appl., 269, Adv. Partial Differ. Equ. (Basel), Birkhäuser/Springer, Cham, 2018, ix+291 pp.
  34. Zhongwei Shen, Jinping Zhuge, “Convergence rates in periodic homogenization of systems of elasticity”, Proc. Amer. Math. Soc., 145:3 (2017), 1187–1202
  35. Yu. M. Meshkova, T. A. Suslina, “Homogenization of initial boundary value problems for parabolic systems with periodic coefficients”, Appl. Anal., 95:8 (2016), 1736–1775
  36. Jun Geng, Zhongwei Shen, “Convergence rates in parabolic homogenization with time-dependent periodic coefficients”, J. Funct. Anal., 272:5 (2017), 2092–2113
  37. Yu. M. Meshkova, T. A. Suslina, “Two-parametric error estimates in homogenization of second order elliptic systems in $mathbb{R}^d$”, Appl. Anal., 95:7 (2016), 1413–1448
  38. Т. А. Суслина, “Теоретико-операторный подход к усреднению уравнений типа Шрeдингера с периодическими коэффициентами”, УМН, 78:6(474) (2023), 47–178
  39. О. А. Ладыженская, Краевые задачи математической физики, Наука, М., 1973, 407 с.
  40. Yu. M. Meshkova, T. A. Suslina, Homogenization of the Dirichlet problem for elliptic systems: two-parametric error estimates, 2017
  41. Ю. М. Мешкова, Т. А. Суслина, “Усреднение задачи Дирихле для эллиптических и параболических систем с периодическими коэффициентами”, Функц. анализ и его прил., 51:3 (2017), 87–93
  42. Ю. М. Мешкова, Т. А. Суслина, “Усреднение первой начально-краевой задачи для параболических систем: операторные оценки погрешности”, Алгебра и анализ, 29:6 (2017), 99–158
  43. Yu. M. Meshkova, “On homogenization of the first initial-boundary value problem for periodic hyperbolic systems”, Appl. Anal., 99:9 (2020), 1528–1563
  44. J. Nečas, Direct methods in the theory of elliptic equations, Transl. from the French, Springer Monogr. Math., Springer, Heidelberg, 2012, xvi+372 pp.
  45. W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge Univ. Press, Cambridge, 2000, xiv+357 pp.
  46. В. А. Кондратьев, С. Д. Эйдельман, “Об условиях на граничную поверхность в теории эллиптических граничных задач”, Докл. АН СССР, 246:4 (1979), 812–815
  47. В. Г. Мазья, Т. О. Шапошникова, Мультипликаторы в пространствах дифференцируемых функций, Изд-во Ленингр. ун-та, Л., 1986, 404 с.
  48. И. Стейн, Сингулярные интегралы и дифференциальные свойства функций, Мир, М., 1973, 342 с.
  49. V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257
  50. О. А. Ладыженская, Н. Н. Уральцева, Линейные и квазилинейные уравнения эллиптического типа, Наука, М., 1964, 538 с.
  51. Т. Като, Теория возмущений линейных операторов, Мир, М., 1972, 740 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Суслина Т.A., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».