О разрешимости полулинейных эллиптических уравнений второго порядка на замкнутых многообразиях

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Работа посвящена вопросам разрешимости в классе слабых решений одного класса полулинейных эллиптических дифференциальных уравнений второго порядка на произвольных замкнутых многообразиях. Эти уравнения являются неоднородными аналогами стационарного уравнения Колмогорова–Петровского–Пискунова–Фишера и имеют важное значение как с прикладной, так и общематематической точек зрения.Библиография: 11 наименований.

Об авторах

Дмитрий Васильевич Туницкий

Институт проблем управления им. В. А. Трапезникова РАН; Московский государственный университет имени М. В. Ломоносова

Email: dtunitsky@yahoo.com
доктор физико-математических наук, без звания

Список литературы

  1. А. Н. Колмогоров, И. Г. Петровский, Н. С. Пискунов, “Исследование уравнения диффузии, соединенной с возрастанием вещества, и его применение к одной биологической проблеме”, Бюллетень МГУ. Сер. А. Математика и механика, 1:6 (1937), 1–26
  2. R. A. Fisher, “The wave of advance of advantageous genes”, Ann. Eugenics, 7 (1937), 355–369
  3. H. Berestycki, F. Hamel, L. Roques, “Analysis of the periodically fragmented environment model. I. Species persistence”, J. Math. Biol., 51:1 (2005), 75–113
  4. G. Perelman, Ricci flow with surgery on three-manifolds , 2003
  5. G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds , 2003
  6. L. I. Nicolaescu, Lectures on the geometry of manifolds, 3rd ed., World Sci. Publ., Hackensack, NJ, 2021, xviii+682 pp.
  7. Д. Гилбарг, Н. Трудингер, Эллиптические дифференциальные уравнения с частными производными второго порядка, Наука, М., 1989, 464 с.
  8. Р. Пале, Семинар по теореме Атьи–Зингера об индексе, Мир, М., 1970, 359 с.
  9. Р. Уэллс, Дифференциальное исчисление на комплексных многообразиях, Мир, М., 1976, 284 с.
  10. Л. Хeрмандер, Анализ линейных дифференциальных операторов с частными производными, т. 1, Теория распределений и анализ Фурье, Мир, М., 1986, 464 с.
  11. Р. Курант, Уравнения с частными производными, Мир, М., 1964, 830 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Туницкий Д.В., 2022

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».