Каноническое представление $C^*$-алгебры эйконалов метрического графа
- Авторы: Белишев М.И.1, Каплун А.В.1
 - 
							Учреждения: 
							
- Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук
 
 - Выпуск: Том 86, № 4 (2022)
 - Страницы: 3-50
 - Раздел: Статьи
 - URL: https://bakhtiniada.ru/1607-0046/article/view/133872
 - DOI: https://doi.org/10.4213/im9179
 - ID: 133872
 
Цитировать
Аннотация
Об авторах
Михаил Игоревич Белишев
Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук
														Email: belishev@pdmi.ras.ru
				                					                																			                								доктор физико-математических наук, без звания				                														
Александр Владимирович Каплун
Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук
														Email: alex.v.kaplun@gmail.com
				                					                																			                												                														
Список литературы
- М. И. Белишев, “Граничное управление и томография римановых многообразий (BC-метод)”, УМН, 72:4(436) (2017), 3–66
 - M. Belishev, “Geometrization of rings as a method for solving inverse problems”, Sobolev spaces in mathematics, Int. Math. Ser. (N. Y.), III, Applications in mathematical physics, Springer, New York, 2009, 5–24
 - M. I. Belishev, M. N. Demchenko, “Elements of noncommutative geometry in inverse problems on manifolds”, J. Geom. Phys., 78 (2014), 29–47
 - M. I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC-method”, Inverse Problems, 20:3 (2004), 647–672
 - M. I. Belishev, A. F. Vakulenko, “Inverse problems on graphs: recovering the tree of strings by the BC-method”, J. Inverse Ill-Posed Probl., 14:1 (2006), 29–46
 - M. I. Belishev, N. Wada, “On revealing graph cycles via boundary measurements”, Inverse Problems, 25:10 (2009), 105011, 21 pp.
 - M. I. Belishev, N. Wada, “A $C^*$-algebra associated with dynamics on a graph of strings”, J. Math. Soc. Japan, 67:3 (2015), 1239–1274
 - M. I. Belishev, A. V. Kaplun, “Eikonal algebra on a graph of simple structure”, Eurasian J. Math. Comput. Appl., 6:3 (2018), 4–33
 - Н. Б. Васильев, “$C^*$-алгебры с конечномерными неприводимыми представлениями”, УМН, 21:1(127) (1966), 135–154
 - P. Niemiec, “Models for subhomogeneous $C^*$-algebras”, Colloq. Math., 166:1 (2021), 75–106
 - S. Avdonin, P. Kurasov, “Inverse problems for quantum trees”, Inverse Probl. Imaging, 2:1 (2008), 1–21
 - S. Avdonin, P. Kurasov, M. Nowaczyk, “Inverse problems for quantum trees II: recovering matching conditions for star graphs”, Inverse Probl. Imaging, 4:4 (2010), 579–598
 - S. Avdonin, G. Leugering, V. Mikhaylov, “On an inverse problem for tree-like networks of elastic strings”, ZAMM Z. Angew. Math. Mech., 90:2 (2010), 136–150
 - P. Kurasov, M. Nowaczyk, “Inverse spectral problem for quantum graphs”, J. Phys. A, 38:22 (2005), 4901–4915
 - P. Kurasov, M. Nowaczyk, “Geometric properties of quantum graphs and vertex scattering matrices”, Opuscula Math., 30:3 (2010), 295–309
 - P. Kurasov, “Graph Laplacians and topology”, Ark. Mat., 46:1 (2008), 95–111
 - M. Nowaczyk, “Inverse spectral problem for quantum graphs with rationally dependent edges”, Operator theory, analysis and mathematical physics, Oper. Theory Adv. Appl., 174, Birkhäuser, Basel, 2007, 105–116
 - В. А. Юрко, “О восстановлении операторов Штурма–Лиувилля на графах”, Матем. заметки, 79:4 (2006), 619–630
 - V. A. Yurko, “Inverse spectral problems for differential operators on arbitrary compact graphs”, J. Inverse Ill-Posed Probl., 18:3 (2010), 245–261
 - V. A. Yurko, “An inverse problem for higher order differential operators on star-type graphs”, Inverse Problems, 23:3 (2007), 893–903
 - G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, Math. Surveys Monogr., 186, Amer. Math. Soc., Providence, RI, 2013, xiv+270 pp.
 - А. В. Каплун, “Каноническое представление алгебры эйконалов трехлучевого графа”, Математические вопросы теории распространения волн. 51, Зап. науч. сем. ПОМИ, 506, ПОМИ, СПб., 2021, 57–78
 - М. Ш. Бирман, М. З. Соломяк, Спектральная теория самосопряженных операторов в гильбертовом пространстве, 2-е изд., испр. и доп., Лань, СПб.–М.–Краснодар, 2010, 464 с.
 - Ж. Диксмье, $C^*$-алгебры и их представления, Наука, М., 1974, 399 с.
 - Дж. Мерфи, $C^*-$алгебры и теория операторов, Факториал, М., 1997, 336 с.
 - Д. В. Кориков, “Об унитарных инвариантах семейства одномерных подпространств”, Препринты ПОМИ, 2022, 2/2022, 6 с.
 - W. Arveson, An invitation to $C^*$-algebras, Grad. Texts in Math., 39, Springer-Verlag, New York–Heidelberg, 1976, x+106 pp.
 - М. А. Наймарк, Нормированные кольца, 2-е изд., Наука, М., 1968, 664 с.
 
Дополнительные файлы
				
			
						
					
						
						
						
									
