Existence of entropy solution to the Neumann problem for elliptic equation with measure-valued potential
- Autores: Vildanova V.F.1, Mukminov F.K.1
-
Afiliações:
- Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa
- Edição: Volume 89, Nº 3 (2025)
- Páginas: 45-79
- Seção: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/303959
- DOI: https://doi.org/10.4213/im9565
- ID: 303959
Citar
Resumo
In a bounded or unbounded domain in $\mathbb{R}^n$,the Neumann problem for a non-linear second order elliptic equation with measure-valued potential is considered.The assumptions on the structure of the equation are stated in terms of a generalized $N$-function.The existence of an entropy solution to the problem is proved.
Palavras-chave
Sobre autores
Venera Vildanova
Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa
Autor responsável pela correspondência
Email: gilvenera@mail.ru
Candidate of physico-mathematical sciences, Associate professor
Farit Mukminov
Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa
Email: mfkh@rambler.ru
Doctor of physico-mathematical sciences, Professor
Bibliografia
- Ph. Benilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273
- N. Saintier, L. Veron, “Nonlinear elliptic equations with measure valued absorption potential”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 22:1 (2021), 351–397
- V. F. Vil'danova, F. Kh. Mukminov, “Perturbations of nonlinear elliptic operators by potentials in the space of multiplicators”, J. Math. Sci. (N.Y.), 257:5 (2021), 569–578
- S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holder, Solvable models in quantum mechanics, With an appendix by P. Exner, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2005, xiv+488 pp.
- М. И. Нейман-заде, А. А. Шкаликов, “Операторы Шрeдингера с сингулярными потенциалами из пространств мультипликаторов”, Матем. заметки, 66:5 (1999), 723–733
- A. Malusa, M. M. Porzio, “Renormalized solutions to elliptic equations with measure data in unbounded domains”, Nonlinear Anal., 67:8 (2007), 2370–2389
- N. Aguirre, “$p$-harmonic functions in $mathbb{R}^N_+$ with nonlinear Neumann boundary conditions and measure data”, Adv. Nonlinear Stud., 19:4 (2019), 797–825
- Л. М. Кожевникова, А. П. Кашникова, “Эквивалентность энтропийных и ренормализованных решений нелинейной эллиптической задачи в пространствах Музилака–Орлича”, Дифференц. уравнения, 59:1 (2023), 35–50
- Л. М. Кожевникова, “Существование энтропийного решения нелинейной эллиптической задачи в неограниченной области”, ТМФ, 218:1 (2024), 124–148
- S. Ouaro, N. Sawadogo, “Nonlinear elliptic $p(u)$-Laplacian problem with Fourier boundary condition”, Cubo, 22:1 (2020), 85–124
- A. Kristaly, M. Mihăilescu, V. Rădulescu, “Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz–Sobolev space setting”, Proc. Roy. Soc. Edinburgh Sect. A, 139:2 (2009), 367–379
- G. Bonanno, G. Molica Bisci, V. Rădulescu, “Existence of three solutions for a non-homogeneous Neumann problem through Orlicz–Sobolev spaces”, Nonlinear Anal., 74:14 (2011), 4785–4795
- B. K. Bonzi, S. Ouaro, F. D. Y. Zongo, “Entropy solutions for nonlinear elliptic anisotropic homogeneous Neumann problem”, Int. J. Differ. Equ., 2013 (2013), 476781, 14 pp.
- M. B. Benboubker, S. Ouaro, U. Traore, “Entropy solutions for nonlinear nonhomogeneous Neumann problems involving the generalized $p(x)$-Laplace operator and measure data”, J. Nonlinear Evol. Equ. Appl., 2014:5 (2014), 53–76
- A. Siai, “Nonlinear Neumann problems on bounded Lipschitz domains”, Electron. J. Differential Equations, 2005 (2005), 09, 16 pp.
- A. Siai, “A fully nonlinear nonhomogeneous Neumann problem”, Potential Anal., 24:1 (2006), 15–45
- P. Gassiat, B. Seeger, The Neumann problem for fully nonlinear SPDE
- J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983, iii+222 pp.
- Y. Ahmida, I. Chlebicka, P. Gwiazda, A. Youssfi, “Gossez's approximation theorems in Musielak–Orlicz–Sobolev spaces”, J. Funct. Anal., 275:9 (2018), 2538–2571
- P. Gwiazda, P. Wittbold, A. Wroblewska, A. Zimmermann, “Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces”, J. Differential Equations, 253:2 (2012), 635–666
- А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, 4-е перераб. изд., Наука, М., 1976, 543 с.
- J.-P. Gossez, “Some approximation properties in Orlicz–Sobolev spaces”, Studia Math., 74:1 (1982), 17–24
- M. B. Benboubker, E. Azroul, A. Barbara, “Quasilinear elliptic problems with nonstandard growth”, Electron. J. Differential Equations, 2011 (2011), 62, 16 pp.
- Н. Данфорд, Дж. Т. Шварц, Линейные операторы. Общая теория, ИЛ, М., 1962, 895 с.
- Г. И. Лаптев, “Слабые решения квазилинейных параболических уравнений второго порядка с двойной нелинейностью”, Матем. сб., 188:9 (1997), 83–112
- Ж.-Л. Лионс, Некоторые методы решения нелинейных краевых задач, Мир, М., 1972, 587 с.
Arquivos suplementares
