Stringy $E$-functions of canonical toric Fano threefolds and their applications
- Autores: Batyrev V.V.1, Schaller K.2
-
Afiliações:
- Mathematisches Institut, Universität Tübingen
- Freie Universität Berlin
- Edição: Volume 83, Nº 4 (2019)
- Páginas: 26-49
- Seção: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/133777
- DOI: https://doi.org/10.4213/im8835
- ID: 133777
Citar
Resumo
Palavras-chave
Sobre autores
Victor Batyrev
Mathematisches Institut, Universität Tübingen
Email: victor.batyrev@uni-tuebingen.de
Doctor of physico-mathematical sciences, Professor
Karin Schaller
Freie Universität Berlin
Bibliografia
- M. Reid, “Minimal models of canonical {$3$}-folds”, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 131–180
- В. И. Данилов, “Геометрия торических многообразий”, УМН, 33:2(200) (1978), 85–134
- A. M. Kasprzyk, “Canonical toric Fano threefolds”, Canad. J. Math., 62:6 (2010), 1293–1309
- V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3:3 (1994), 493–535
- M. Kreuzer, H. Skarke, “Classification of reflexive polyhedra in three dimensions”, Adv. Theor. Math. Phys., 2:4 (1998), 853–871
- M. Beck, Beifang Chen, L. Fukshansky, C. Haase, A. Knutson, B. Reznick, S. Robins, A. Schürmann, “Problems from the Cottonwood Room”, Integer points in polyhedra – geometry, number theory, algebra, optimization, Contemp. Math., 374, Amer. Math. Soc., Providence, RI, 2005, 179–191
- V. V. Batyrev, D. I. Dais, “Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry”, Topology, 35:4 (1996), 901–929
- А. Г. Хованский, “Многогранники Ньютона и род полных пересечений”, Функц. анализ и его прил., 12:1 (1978), 51–61
- V. Batyrev, “The stringy Euler number of Calabi–Yau hypersurfaces in toric varieties and the Mavlyutov duality”, Pure Appl. Math. Q., 13:1 (2017), 1–47
- V. Batyrev, K. Schaller, “Stringy Chern classes of singular toric varieties and their applications”, Commun. Number Theory Phys., 11:1 (2017), 1–40
- L. Dixon, J. A. Harvey, C. Vafa, E. Witten, “Strings on orbifolds”, Nuclear Phys. B, 261 (1985), 678–686
- V. V. Batyrev, “Stringy Hodge numbers of varieties with Gorenstein canonical singularities”, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, 1–32
- H. Skarke, “Weight systems for toric Calabi–Yau varieties and reflexivity of Newton polyhedra”, Modern Phys. Lett. A, 11:20 (1996), 1637–1652
- A. M. Kasprzyk, M. Kreuzer, B. Nill, “On the combinatorial classification of toric log del Pezzo surfaces”, LMS J. Comput. Math., 13 (2010), 33–46
- G. K. White, “Lattice tetrahedra”, Canad. J. Math., 16 (1964), 389–396
- A. Corti, V. Golyshev, “Hypergeometric equations and weighted projective spaces”, Sci. China Math., 54:8 (2011), 1577–1590
- A. S. Libgober, J. W. Wood, “Uniqueness of the complex structure on Kähler manifolds of certain homotopy types”, J. Differential Geom., 32:1 (1990), 139–154
- V. V. Batyrev, “Stringy Hodge numbers and Virasoro algebra”, Math. Res. Lett., 7:2 (2000), 155–164
Arquivos suplementares
