Modern studying methods of the medicines ventotropic activity determination

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The review article discusses the currently used preclinical research methods of angioprotective activity of biologically active substances. Published data indicate the social and economic significance of chronic venous pathologies as a common group of diseases affecting a significant part of the population, characterized by a major risk of complications that require prompt correction. One of the main methods of complex treatment is pharmacotherapy with phlebotropic agents, due to their complex effect on various links of this pathology: increasing vascular tone, reducing pain, improving lymphatic drainage, beneficially affecting all stages of inflammation, membrane-stabilizing and antioxidant effect. The creation and introduction of new and effective medicines of phleboprotective action, including herbal origin, is one of the priority areas of pharmacology and medicine. However, preclinical trials, as one of the long stages of drug development, need optimization. The purpose of the publication: systematization of methods for determining angioprotective activity, consisting of anti-inflammatory, antioxidant, capillary-strengthening activity. The review contains information about the main stages of the preclinical phase of testing – from the search for promising compounds to the developed and used preliminary pharmacological tests to determine biological activity.

作者简介

A. Timokhina

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

编辑信件的主要联系方式.
Email: mail.t.a.s.77777@mail.ru
ORCID iD: 0000-0002-3658-5093
SPIN 代码: 5684-0544

Post-graduate Student, Research Scientist

俄罗斯联邦, Grina, str. 7, Moscow, 117216

I. Lupanova

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: lupanova@vilarnii.ru
ORCID iD: 0000-0001-8183-2877
SPIN 代码: 6716-6647

Ph.D. (Biol.), Head of Pre-clinical Studies Center

俄罗斯联邦, Grina, str. 7, Moscow, 117216

A. Varshaver

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: anastasiavar_stavbio@mail.ru
ORCID iD: 0009-0007-3628-8105
SPIN 代码: 8836-2131

Head of the Microbiological Research Laboratory

俄罗斯联邦, Grina, str. 7, Moscow, 117216

M. Volochko

N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation

Email: mail.t.a.s.77777@mail.ru
ORCID iD: 0009-0009-0890-9087
SPIN 代码: 3118-3716

Student

俄罗斯联邦, Ostrovityanova, str. 1, Moscow, 117513

参考

  1. Kurginyan K.M., Raskin V.V. A modern view on the problem of pharmacotherapy for chronic venous insufficiency with micronized purified flavonoid fraction drugs. Cardiovascular Therapy and Prevention. 2020; 19(4): 87–93. (In Russ.).
  2. Alekberzade A.V., Lipnitskiy E.M. Varikoznaya bolezn' nizhnikh konechnostey. Uchebno-metodicheskoe posobie dlya studentov meditsinskikh vuzov. M.: FGBOU VO Pervyy Moskovskiy gosudarstvennyy universitet imeni I.M. Sechenova. 2017; 25 s. (In Russ.).
  3. Seliverstov E.I., Avakyants I.P., Nikishkov A.S. et al. Epidemiology of chronic venous diseases. Phlebology. 2016; 10(1): 35-43. (In Russ.).
  4. Rabe E., Régnier C., Goron F. et al. The prevalence, disease characteristics and treatment of chronic venous disease: an international web-based survey. J Comp Eff Res. 2020; 9(17): 1205–1218. doi: 10.2217/cer-2020-0158.
  5. Voronkov A.V., Gamzeleva O.Yu. A review of modern phlebotropic drugs based on flavonoids as promising endothelial protectors in the treatment of chronic venous diseases. Stationary-replacing technologies: Ambulatory Surgery. 2019; (1-2): 27–33. (In Russ.).
  6. Davies A.H. The seriousness of chronic venous disease: a review of real-world evidence. Adv Ther. 2019; 36 (1), 5–12. DOI: https://doi.org/10.1007/s12325-019-0881-7.
  7. Shevchenko Yu. L., Stoyko Yu. M. Klinicheskaya flebologiya. M.: DPK Press; 2016; 256 s. (In Russ.).
  8. Butcher M.A. Review of evidence on red vine leaf extract in the prevention and management of venous disease. Journal of Wound Care. 2006; 15(9): 393. (In Russ.). doi: 10.12968/jowc.2006.15.9.26959.
  9. Kharkevich D.A. Venotropic (phlebotropic) agents. 2004; 67(1): 69–77. (In Russ.).
  10. Lukyanova Yu.S., Pokrovsky M.V. Main pathophysiological and molecular mechanisms of chronic venous diseases and their pharmacological correction. Clinical Pharmacology and Therapy. 2019; 28(3): 52–61. (In Russ.).
  11. Dukhanin A.S. Systemic phleboprotective drugs: from active substance to clinical effect. Angiology and Vascular Surgery. 2014; 20(4): 84–92. (In Russ.).
  12. https://www.rlsnet.ru/pharm-groups/angioprotektory-i-korrektory-mikrocirkulyacii-v-kombinaciyax-140.
  13. Shkurpit M.N., Popovyan N.O. The impact of a sedentary lifestyle on the body and preventive methods. Education and Upbringing: Methodologies and Practice. 2016; (27): 131–132. (In Russ.).
  14. Dukhanin A.S., Vertkin A.L. Pleiotropic effects of phlebotropic drugs: from pharmacological advantages to undesirable drug interactions. Angiology and Vascular Surgery. 2017; 23(2): 72–80. (In Russ.).
  15. Djavakhyan M.A. Current state and prospects for the development of drugs for the prevention and treatment of chronic venous insufficiency. Issues of drug quality assurance. 2016; 2: 4–13. (In Russ.).
  16. Talibov O.B. Pharmacology of drugs used in chronic venous diseases. Surgery. Named after N.I. Pirogov Journal. 2019; 2: 106–109. (In Russ.).
  17. Yargin S.V. Flavonoids as venotropic agents: a commentary. Chief Physician of Southern Russia. 2018; 4(63): 68–70. (In Russ.).
  18. Dzenina O.V., Lobanov V.N., Gordeev V.S. Pharmacotherapy of chronic venous insufficiency of the lower extremities. Ambulatory Surgery of Stationary-Replacing Technologies. 2018; 1-2: 69–70. (In Russ.).
  19. Van der Laan J.W., Brightwell J., McAnulty P. et al. Regulatory acceptability of the minipig in the development of pharmaceuticals, chemicals and other products. Journal of Pharmacological and Toxicological Methods. 2010; 62(3): 184–195. doi: 10.1016/j.vascn.2010.05.005.
  20. Patent № 2290189 (RF). Sredstvo, obladayushchee venotoniziruyushchim, protivovospalitelnym i kapillyaroprotektornym deystviem, i sposob ego polucheniya / I.Yu. Makarov; opubl. 27.12.2006 (In Russ.).
  21. Jiao X., Jin X., Ma Y. et al. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Camputational biology and chemistry. 2021; 90: 107402. doi: 10.1016/j.compbiolchem.2020.107402 /.
  22. Golovko Yu.S., Ivashkevich O.A., Golovko A.S. Modern methods for searching for new medicinal agents. Bulletin of BSU. 2012; 2(1): 7–15. (In Russ.).
  23. Ciemny M. Kurcinski M., Kamel K. et al. Protein-peptide docking: opportunities and challenges. Drug Discovery Today. 2018; 23: 1530–1537. doi: 10.1016/j.drudis.2018.05.006.
  24. Doytchinova I. Drug Design–Past, Present, Future. Molecules. 2022; 27(5): 1496; https://doi.org/10.3390/molecules27051496.
  25. Dukhanin A.S. Systemic phleboprotective agents: from active substance to clinical effect. Angiology and Vascular Surgery. 2014; 20(4): 84–92. (In Russ.).
  26. Stepanova E.F., Remezova I.P., Shevchenko A.M. et al. Phleboprotectors based on flavonoids: dosage forms, biopharmaceutical characteristics, technological features. Pharmacy and Pharmacology. 2020; 8(6): 405–415. (In Russ.); https://doi.org/10.19163/2307-9266-2020-8-6-405-415.
  27. Bogachev V.Yu. Systemic pharmacotherapy of chronic venous insufficiency of the lower extremities. Current state of the issue. Russian Medical Journal. 2004; 17: 994 p. (In Russ.).
  28. Bunaciu A.A., Danet A.F., Fleschin Ş., Aboul-Enein H.Y. Recent Applications for in Vitro Antioxidant Activity Assay, Critical Reviews in Analytical Chemistry. 2016; 46(5): 389–399. doi: 10.1080/10408347.2015.1101369.
  29. Gulcin I. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020; 94(3): 651–715. doi: 10.1007/s00204-020-02689-3.
  30. Babenkova I.V., Buravlev E.A., Buravleva K.V. et al. Determination of antioxidant activity of blood plasma in experimental and clinical studies. Eurasian Union of Scientists. 2015; 4–10 (13): 97–100. (In Russ.).
  31. Alekseev A.V., Proskurnina E.V., Vladimirov Yu.A. Determination of antioxidants by the method of activated chemiluminescence using 2,2'-azobis(2-amidinopropane). Moscow University Bulletin. Series 2. Chemistry. 2012; 53 (3): 187–193. (In Russ.).
  32. Ancuceanu R., Anghel A.I., Hovaneț M.V. et al. Antioxidant Activity of Essential Oils from Pinaceae Species. Antioxidants (Basel). 2024 Feb 26; 13(3): 286. doi: 10.3390/antiox13030286.
  33. Prior R.L., Wu X., Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005 May 18; 53(10): 4290–302. doi: 10.1021/jf0502698.
  34. Deniseko T.A., Vishnikin A.B., Tsyganok L.P. Spectrophotometric determination of the total phenolic compounds in plant objects using aluminum chloride, 18-molybdodiphosphate, and Folin-Ciocalteu reagent. Analytics and Control. 2015; 19(4): 373–380. (In Russ.). doi: 10.15826/analitika.2015.19.4.012.
  35. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry. 2004; 37: 277–285.
  36. Ivanova A.V. Potentsiometriya v issledovanii antioksidantnykh i antiradikal'nykh svoystv veshchestv: dis. … d-r khim. nauk: 02.00.02. Yekaterinburg, 2019. (In Russ.).
  37. Özyürek M., Güçlü K., Apak R. The main and modified CUPRAC methods of antioxidant measurement. Trends in Analytical Chemistry. 2011; 30: 652–664.
  38. Belaya N.I., Nikolaevsky A.N., Ivleva T.N., Sheptura O.G. Antiradical activity of fruit juices in reaction with diphenylpicrylhydrazyl. Chemical and Pharmaceutical Journal. 2009; 43(6): 32–34. (In Russ.).
  39. Tolpygina O.A. The Role of Glutathione in the Antioxidant Defense System (Review). Bulletin of the VSC of the Siberian Branch of the RAMS. 2012; 2(84): Part 2, p. 178–180. (In Russ.).
  40. Baker A., Lin С.С., Lett C. et al. Catalase: A critical node in the regulation of cell fate. Free Radical Biology and Medicine. 2023; 199: 56–66; https://doi.org/10.1016/j.freeradbiomed.2023.02.009.
  41. Patent № 2181892 S1. Sposob vyyavleniya veshchestv, obladayushchikh antioksidantnymi svoystvami in vitro / Bykov V.A. Dubinskaya V.A. Mineeva M.F. Rebrov L.B. Kolkhir V.K. 06.06.2001. (In Russ.).
  42. Codoñer-Franch P., Tavárez-Alonso S., Murria-Estal R. et al. Elevated advanced oxidation protein products (AOPPs) indicate metabolic risk in severely obese children. Nutr Metab Cardiovasc Dis. 2012; 22(3): 237–243. doi: 10.1016/j.numecd.2010.06.002.
  43. Pozdnyakov D.I., Kozlova V.V., Karmanovich A.A. et al. Comparative Study of the Effectiveness of Venotonic Medications in Experiment. Ambulatory Surgery. 2023; 20(1): 165–173. (In Russ.); https://doi.org/10.21518/akh2022-002.
  44. Bovt E.A., Koleva L.D., Chernyak E.A. et al. Pyruvate Kinase Deficiency and Non-Spherocytic Hemolytic Anemia. Issues of Hematology/Oncology and Immunopathology in Pediatrics. 2020; 19(3): 121–130. (In Russ.); https://doi.org/10.24287/1726-1708-2020-19-3-121-130.
  45. Nagata J., Yokodera H., Maeda G. In vitro and in vivo studies on anti-inflammatory effects of traditional okinawan vegetable methanol extracts. ACS Omega 2019; 4 (13): 15660–15664. doi: 10.1021/acsomega.9b02178.
  46. Lazuko S.S., Medvedev M.N., Belyaeva L.E. Hyperexpression of inducible NO synthase – an important cause of enhanced endothelium-dependent dilation and reduced adrenergic reactivity of aortic rings in rats with experimental diabetes mellitus. Vitebsk State Medical University Bulletin. 2019; 18(2): 44–52. (In Russ.).
  47. Mizina P.G., Strelekova L.B., Gulenkov A.S. Evaluation of anti-inflammatory activity of experimental samples of medicinal forms based on liquid plant extracts. Biopharmaceutical Journal. 2019; 11 (1): 36–40. (In Russ.).
  48. Dul V.N., Dargaeva T.D., Sokovskaya T.A. et al. Leaves of cultivated grapevine as a source of valuable biologically active substances. Medical Bulletin of Bashkortostan. 2012; 7 (S5): 38–39. (In Russ.).
  49. Ferubko E.V., Leskova T.E., Kolkhir V.K. et al. Study of pharmacological activity of red grape leaf extract (Vitis vinifera L.). Development and registration of medicinal products. 2017; 3 (20): 156–159. (In Russ.).
  50. Patent № 2630977. Lichebnyy krem, obladayushchiy protivovospalitel'nym i venotoniziruyushchim deystviem / M.A. Dzhavakhyan, T.D. Dargaeva, V.N. Dul, O.L. Saybel' i dr.; opubl. 15.09.2017. (In Russ.).

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».