🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Secondary metabolites and biotechnology of key lime (Citrus aurantiifolia (Christm.) Swingle)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Citrus aurantiifolia (key lime or mexican lime) belongs to the family Rutaceae, members of which are highly valued worldwide for their flavor, valuable nutrients, and bioactive compounds (BACs). Due to the biological activity of its secondary metabolites (SMs), lime and its components are used in traditional medicine for treating joint diseases, headaches, coughs, cardiovascular disorders, and hemorrhoids. The SMs of lime include alkaloids, carotenoids, coumarins, essential oils (including isoprenoids), and phenolic compounds (such as flavones, flavonoids, and phenolic acids). The juice, extracts, essential oil, and SMs of lime are widely used in the food and cosmetic industries, medicine, agriculture, and bionanotechnology as flavor enhancers, fragrances, preservatives, antioxidants, antimicrobial agents, herbicides, insecticides, and substances for metal recovery from precursor compounds during nanoparticle synthesis. Lime extracts have been noted for their ability to inhibit the growth of cancer cells and even induce apoptosis. The propagation of key lime using traditional methods is often inefficient and time-consuming, which hinders the rapid and large-scale production of BACs. The application of biotechnological methods allows for the optimization of the propagation process, the production of virus-free plant material, and the enhancement of SM synthesis. Biotechnological methods of lime propagation include the creation of «artificial seeds», somatic embryogenesis, and clonal micropropagation. The accumulation of target metabolites can be induced by modifying the composition of the nutrient medium, specifically through the application of phytohormones and the addition of NaCl at various concentrations. A promising approach in genetic engineering is Agrobacterium-mediated transformation. Although lime exhibits low susceptibility to infection by Agrobacterium strains, significant improvements in transformation efficiency have been achieved through protocol modifications and the use of antioxidants. Electrofusion of protoplasts is an effective method for obtaining interspecific and intergeneric lime hybrids. Thus, hybrids of Sudachi and Lime as well as Lime and Feroniella have been successfully produced. Lime extracts, due to the presence of stabilizing and modifying substances, are actively used in the green synthesis of nanoparticles. Nanoparticles of silver, gold, zinc oxide, copper oxide, and tin oxide have been synthesized from extracts of various plant parts.

作者简介

P. Fedotova

Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

编辑信件的主要联系方式.
Email: polifedou@yandex.ru
ORCID iD: 0009-0008-0479-4617
SPIN 代码: 2763-4522

Student

俄罗斯联邦, 49 Timiryazevskaya str., Moscow, 127434

O. Zinovieva

Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

Email: zolgad10@mail.ru
ORCID iD: 0009-0000-3675-5526
SPIN 代码: 5259-9553

Student

俄罗斯联邦, 49 Timiryazevskaya str., Moscow, 127434

M. Cherednichenko

Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

Email: cherednichenko@rgau-msha.ru
ORCID iD: 0000-0002-7856-9454
SPIN 代码: 1795-3182

Ph.D. (Biol.), Associate Professor

俄罗斯联邦, 49 Timiryazevskaya str., Moscow, 127434

参考

  1. Utteridge T., Bramley G. The Kew Tropical Plant Families Identification Handbook, Second Edition. Kew: Kew Publishing Royal Botanic Gardens; 2020.
  2. Thulin M. Flora Somalia. 2008; 2. Accessed February 16, 2025. https://plants.jstor.org/collection/FLOS.
  3. Киселева Т.Л., Карпеев А.А., Смирнова Ю.А. и др. Лечебные свойства цитрусовых. Традиционная медицина. 2008; 2(13): 44–50. [Kiseleva T.L., Karpeev A.A., Smirnova Yu.A. i dr. Lechebnye svoystva tsitrusovykh. Traditsionnaya meditsina. 2008; 2(13): 44–50 (In Russ.)].
  4. Singh S., Tarannum Z., Kokane S. et al. Efficient transformation and regeneration of transgenic plants in commercial cultivars of Citrus aurantifolia and Citrus sinensis. Transgenic Research. 2023; 32(6): 523–536. doi: 10.1007/s11248-023-00367-5.
  5. Dutt M., Vasconcellos M., Grosser J.W. Effects of antioxidants on Agrobacterium-mediated transformation and accelerated production of transgenic plants of Mexican lime (Citrus aurantifolia Swingle). Plant Cell, Tissue and Organ Culture. 2011; 107: 79–89. doi: 10.1007/s11240-011-9959-x.
  6. Palchoudhury S., Saha B., Das S. et al. An improved and efficient organogenic regeneration protocol using epicotyl segment of in vitro grown Kagzilime (Citrus aurantifolia) seedling. Journal of plant development sciences. 2019; 11(7): 389–395.
  7. Saito W., Ohgawara T., Shimizu J. et al. Acid citrus somatic hybrids between sudachi (Citrus sudachi Hort. ex Shirai) and lime (C. aurantifolia Swing.) produced by electrofusion. Plant Science. 1991; 77(1): 125–130. doi: 10.1016/0168-9452(91)90188-E.
  8. Takayanagi R., Hidaka T., Omura M. Regeneration of Intergeneric Somatic Hybrids by Electrical Fusion between Citrus and Its Wild Relatives: Mexican Lime (Citrus aurantifolia) and Java Feroniella (Feroniella lucida) or Tabog (Swinglea glutinosa). Journal of the Japanese Society for Horticultural Science. 1992; 60(4): 799–804. doi: 10.2503/jjshs.60.799.
  9. Narang N., Jiraungkoorskul W. Anticancer Activity of Key Lime, Citrus aurantifolia. Pharmacognosy reviews. 2016; 10(20): 118–122. doi: 10.4103/0973-7847.194043.
  10. Kasim V.N., Hatta М., Natzir R. et al. Antibacterial and anti-inflammatory effects of lime (Citrus aurantifolia) peel extract in Balb/c mice infected by Salmonella typhi. Journal of Biological Research - Bollettino della Società Italiana di Biologia Sperimentale. 2020; 93: 81–84. doi: 10.4081/jbr.2020.8951.
  11. Lin L., Chuang C., Chen H. et al. Lime (Citrus aurantifolia (Christm.) Swingle) Essential Oils: Volatile Compounds, Antioxidant Capacity, and Hypolipidemic Effect. Foods. 2019; 8(9): 398. doi: 10.3390/foods8090398.
  12. Fouad H.A., Camara C.A.G.D. Chemical composition and bioactivity of peel oils from Citrus aurantiifolia and Citrus reticulata and enantiomers of their major constituent against Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Stored Products Research. 2017; 73: 30–36. doi: 10.1016/j.jspr.2017.06.001.
  13. Fagodia S.K., Singh H.P., Batish D.R. et al. Phytotoxicity and cytotoxicity of Citrus aurantiifolia essential oil and its major constituents: Limonene and citral. Industrial Crops and Products. 2017; 108: 708–715. doi: 10.1016/j.indcrop.2017.07.005.
  14. Milutinovici R.A., Chioran D., Buzatu R. et al. Vegetal Compounds as Sources of Prophylactic and Therapeutic Agents in Dentistry. Plants. 2021; 10(10): 2148. doi: 10.3390/plan-ts10102148.
  15. Гетко Н.В., Атесленко Е.В., Кулян Р.В. и др. Ароматические соединения, выделяемые растениями рода Citrus L. в условиях оранжерей. Известия Национальной академии наук Беларуси. 2021; 66(3): 312–319. [Hetka N.V., Ateslenko E.V., Kulyan R.V. i dr. Aromatic compounds secreted by plants of the genus Citrus L. in greenhouse conditions. Proceedings of the National Academy of Sciences of Belarus. Biological series. 2021; 66(3): 312–319 (In Russ.)] doi: 10.29235/1029-8940-2021-66-3-312-319.
  16. Cruz-Valenzuela M.R., Tapia-Rodríguez M.R., Vazquez-Armenta F.J. et al. Chapter 61 – Lime (Citrus aurantifolia) Oils. Essential Oils in Food Preservation, Flavor and Safety, Academic Press. 2016; 4: 531–537. doi: 10.1016/B978-0-12-416641-7.00061-4.
  17. Indriyani N.N., Anshori J.A., Permadi N. et al. Bioactive Components and Their Activities from Different Parts of Citrus aurantifolia (Christm.) Swingle for Food Development. Foods. 2023; 12(10): 2036. doi: 10.3390/foods12102036.
  18. Stohs S.J., Shara M., Ray S.D. p-Synephrine, ephedrine, p-octopamine and m-synephrine: Comparative mechanistic, physiological and pharmacological properties. Phytotherapy research. 2020; 34(8): 1838–1846. doi: 10.1002/ptr.6649.
  19. Stohs S.J., Preuss H.G., Shara M. A review of the receptor-binding properties of p-synephrine as related to its pharmacological effects. Oxidative medicine and cellular longevity. 2011; 2011(1): 482973. doi: 10.1155/2011/482973.
  20. Havsteen B.H. The biochemistry and medical significance of the flavonoids. Pharmacology & Therapeutics. 2002; 96(2-3): 67–202. doi: 10.1016/S0163-7258(02)00298-X.
  21. Кулешов А.С., Белоус О.Г. Химический состав представителей рода Citrus. Субтропическое и декоративное садоводство. 2020; 72: 108–116. [Kuleshov A.S., Belous O.G. Chemical composition of Citrus representatives. Subtropical and Ornamental Horticulture. 2020; 72: 108–116 (In Russ.)]. doi: 10.31360/2225-3068-2020-72-108-116.
  22. Tavallali H., Bahmanzadegan A., Rowshan V. et al. Essential oil composition, antioxidant activity, phenolic compounds, total phenolic and flavonoid contents from pomace of Citrus aurantifolia. Journal of Medicinal Plants and By-products. 2021; 10(Special): 103–116. doi: 10.22092/jmpb.2020.341476.1175.
  23. Padilla de la Rosa J.D., Ruiz-Palomino P., Arriola-Guevara E. et al. A green process for the extraction and purification of hesperidin from mexican lime peel (Citrus aurantifolia Swingle) that is extendible to the citrus genus. Processes. 2018; 6(12): 266. doi: 10.3390/pr6120266.
  24. König A., Sadova N., Dornmayr M. et al. Chemical composition of hexane extract of Citrus aurantifolia and anti-Mycobacterium tuberculosis activity of some of its constituents. Molecules. 2012; 17(9): 11173–11184. doi: 10.3390/molecules170911173.
  25. Sandoval-Montemayor N.E., García A., Elizondo-Treviño E. et al. Chemical composition of hexane extract of Citrus aurantifolia and anti-Mycobacterium tuberculosis activity of some of its constituents. Molecules. 2012; 17(9): 11173–11184. doi: 10.3390/molecules170911173.
  26. Alessandrello C., Gammeri L., Sanfilippo S. et al. A spotlight on lime: a review about adverse reactions and clinical manifestations due to Citrus aurantiifolia. Clinical and Molecular Allergy. 2021; 19(1): 12. doi: 10.1186/s12948-021-00152-x.
  27. Amin H., Shekafandeh A. Somatic Embryogenesis and Plant Regeneration from Juice Vesicles of Mexican Lime (Citrus Aurantifolia L.). Jordan Journal of Agricultural Sciences. 2015; 11(2): 495-505. doi: 10.12816/0030441.
  28. Sharma P., Roy B. Impact of Encapsulation on Plantlet Regeneration from in vitro Grown Shoot tips of Citrus aurantifolia (Lime). Plant Tissue Culture and Biotechnology. 2021; 31(1): 43–49. doi: 10.3329/ptcb.v31i1.54110.
  29. Harishchandra S.S. In vitro propagation of Citrus aurantifolia cv. Sai Sharbati. Juni Khyat. 2020; 10(6): 249–258.
  30. Al-Khayri J.M., Al-Bahrany A.M. In vitro micropropagation of Citrus aurantifolia (lime). Current Science. 2001; 81(9): 1242–1246.
  31. Obaid A.A. Increasing of cumarine and caffic acid production from apomixis embryo of Citrus limon L. Brum F. and Citrus aurantifolia (Swingle) in vitro. Thi-Qar University Journal for Agricultural Researches. 2018; 7(1): 55–70.
  32. Darwish H., Al-Osaimi G.S., A.l. Kashgry N.A.T. et al. Evaluating the genotoxicity of salinity stress and secondary products gene manipulation in lime, Citrus aurantifolia, plants. Frontiers in plant science. 2023; 14: 1211595. doi: 10.3389/fpls.2023.1211595.
  33. Marslin G., Siram K., Maqbool Q. et al. Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. Materials. 2018; 11(6): 940. doi: 10.3390/ma11060940.
  34. Virkutyte J., Varma R.S. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chemical Science. 2011; 2(5): 837–846. doi: 10.1039/C0SC00338G.
  35. Belova M.M., Shipunova V.O., Kotelnikova P.A. et al. “Green” Synthesis of Cytotoxic Silver Nanoparticels Based on Secondary Metabolites of Lavandula angustifolia Mill. Acta Naturae. 2019; 11(2(41)): 47–53. doi: 10.32607/20758251-2019-11-2-47-53.
  36. Ghramh H.A., Ibrahim E.H., Kilnay M. et al. Silver Nanoparticle Production by Ruta graveolens and Testing Its Safety, Bioactivity, Immune Modulation, Anticancer, and Insecticidal Potentials. Bioinorganic Chemistry and Applications. 2020; 2020: 5626382. doi: 10.1155/2020/5626382.
  37. Arsia T.Y., Nargis B.T., Muhammad I.M.H. et al. Green synthesis, Antioxidant Potential and Hypoglycemic Effect of Silver Nanoparticles using Ethanolic Leaf Extract of Clausena anisata (Willd.) Hook. F. Ex Benth. of Rutaceae. Pharmacognosy Journal. 2016; 8(6): 565–575. doi: 10.5530/pj.2016.6.8.
  38. Usharani S., Devi B.R. Synthesis of silver nanoparticles using orange peel extracts and their antibacterial activity. World Journal of Pharmaceutical Research. 2019; 8(10): 854–869. doi: 10.20959/wjpr201910-15510.
  39. Mickky B., Elsaka H., Abbas M. et al. Orange peel-mediated synthesis of silver nanoparticles with antioxidant and antitumor activities. BMC Biotechnology. 2024; 24(1): 66. doi: 10.1186/s12896-024-00892-z.
  40. Basnet P., Chanu T.I., Samanta D. et al. A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. Journal of Photochemistry and Photobiology B: Biology. 2018; 183: 201–221. doi: 10.1016/j.jphotobiol.2018.04.036.
  41. Nabi G., Ain Q.U., Tahir M.B. et al. Green synthesis of TiO2 nanoparticles using lemon peel extract: their optical and photocatalytic properties. International Journal of Environmental Analytical Chemistry. 2022; 102(2): 434–442. doi: 10.1080/03067319.2020.1722816.
  42. Shakerimanesh K., Bayat F., Shahrokhi A. et al. Biomimetic synthesis and characterisation of homogenouse gold nanoparticles and estimation of its cytotoxity against breast cancer cell line. Materials Technology. 2022; 37(13): 2853–2860. doi: 10.1080/10667857.2022.2081287.
  43. Amutha S., Sridhar S. Green synthesis of magnetic iron oxide nanoparticle using leaves of Glycosmis mauritiana and their antibacterial activity against human pathogens. Journal of Innovations in Pharmaceutical and Biological Sciences. 2018; 5(2): 22–26.
  44. Mustapha T., Ithnin N.R., Othman H. et al. Bio-Fabrication of Silver Nanoparticles Using Citrus aurantifolia Fruit Peel Extract (CAFPE) and the Role of Plant Extract in the Synthesis. Plants. 2023; 12(8). doi: 10.3390/plants12081648.
  45. Chowdhury R.A., Dhar S.A., Das S. et al. Green synthesis and characterization of silver nanoparticles from the aqueous extract of the leaves of Citrus aurantifolia. Materials Today: Proceedings. 2021; 44: 1039–1042. doi: 10.1016/j.matpr.2020.11.176.
  46. Adebayo-Tayo B.C., Akinsete T.O., Odeniyi O.A. Phytochemical Composition and Comparative Evaluation of Antimicrobial Activities of the Juice Extract of Citrus Aurantifolia and its Silver Nanoparticles. Nigerian Journal of Pharmaceutical Research. 2016; 12(1): 59–64.
  47. Samat N.A., Nor R.M. Sol–gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceramics International. 2013; 39: S545–S548. doi: 10.1016/j.ceramint.2012.10.132.
  48. Xing H. Citrus aurantifulia extract as a capping agent to biosynthesis of gold nanoparticles: Characterization and evaluation of cytotoxicity, antioxidant, antidiabetic, anticholinergics, and anti‐bladder cancer activity. Applied Organometallic Chemistry. 2021; 35(5): e6191. doi: 10.1002/aoc.6191.
  49. Rafique M., Tahir M.B., Irshad M. et al. Novel Citrus aurantifolia leaves based biosynthesis of copper oxide nanoparticles for environmental and wastewater purification as an efficient photocatalyst and antibacterial agent. Optik. 2020; 219: 165138. doi: 10.1016/j.ijleo.2020.165138.
  50. Luque P.A., Nava O., Soto-Robles C.A. et al. SnO2 nanoparticles synthesized with Citrus aurantifolia and their performance in photocatalysis. Journal of Materials Science: Materials in Electronics. 2020; 31: 16859–16866. doi: 10.1007/s10854-020-04242-5.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».