The miR-338-3p expression level in pemphigus diagnosis
- 作者: Teplyuk N.P.1, Mak D.V.1, Kolesova Y.V.1, Lepekhova A.A.1, Fedotcheva T.A.2, Ulchenko D.N.2
-
隶属关系:
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
- The Russian National Research Medical University named after N.I. Pirogov
- 期: 卷 27, 编号 4 (2024)
- 页面: 448-462
- 栏目: DERMATOLOGY
- URL: https://bakhtiniada.ru/1560-9588/article/view/313018
- DOI: https://doi.org/10.17816/dv633413
- ID: 313018
如何引用文章
详细
BACKGROUND: Pemphigus is a group of potentially fatal chronic cutaneous diseases in which blisters appear on the skin and mucous membranes as a result of IgG autoantibodies binding to desmosomes in the epidermis, leading to keratinocytes acantholysis. Currently, methods to monitor disease activity and therapy efficiency using various biomarkers are being investigated. MicroRNA expression, in particular miR-338-3p, has been one of these biomarkers, as changes in miR-338-3p expression may trigger the Th1/Th2 cell imbalance and possibly be involved in the pathogenesis of the disease.
AIM: This study aimed to design a protocol to evaluate the level of miR-338-3p expression in peripheral blood mononuclear cells and verify the diagnostic value of miR-338-3p expression in pemphigus.
MATERIALS AND METHODS: Experimental prospective comparative study was conducted from February 2023 to February 2024 at the Dermatology Department of Sechenov University. The study included 10 patients with pemphigus in the active stage of the disease, 3 patients in remission, and 9 participants of the control group. The expression of miRNA-338-3p was analyzed by real-time polymerase chain reaction, cDNA was obtained using StemLoop method. The evaluation of miRNA-338-3p expression level was based on its comparison with the expression of U6 gene using 2-ΔΔСt method.
RESULTS: The expression level of miR-338-3p was analyzed in 10 patients in the active stage of the disease (5 men, 50%; 5 women, 50%; mean age 46±10.7 years), 3 patients in remission (2 women, 66.7%; 1 man, 33.3%; mean age 57±8 years), 9 control group (8 women, 88.9%; 1 man, 11.1%; mean age 36±16.8 years). The mean expression level of miR-338-3p was 8.64 (SD±5.72) in patients with active disease, 3.38 (SD±1.44) in patients in remission, and 1.48 (SD±1.12) in controls. A statistically significant increase in the expression level of miR-338-3p was found in patients in the active disease stage compared to the control group (p=0.002). A statistically significant correlation was found between the level of miR-338-3p expression and the PDAI index score (p <0.001).
CONCLUSION: Based on the data obtained in this study, it can be assumed that microRNAs are important in pemphigus, and miR-338-3p expression in particular may serve as a key element in pemphigus pathogenesis. More detailed study of microRNAs and analysis of expression variability according to clinical data may provide the basis for developing new diagnostic methods and severity scoring, allowing more accurate and less invasive diagnostic methods, as well as monitoring and predicting disease progression.
作者简介
Natalia Teplyuk
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: teplyukn@gmail.com
ORCID iD: 0000-0002-5800-4800
SPIN 代码: 8013-3256
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, 8-2 Trubetskaya street, 119991 MoscowDaria Mak
I.M. Sechenov First Moscow State Medical University (Sechenov University)
编辑信件的主要联系方式.
Email: dariamak25@gmail.com
ORCID iD: 0000-0002-7020-0572
SPIN 代码: 8204-4555
俄罗斯联邦, 8-2 Trubetskaya street, 119991 Moscow
Yuliya Kolesova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: kolesovamsmu@gmail.com
ORCID iD: 0000-0002-3617-2555
SPIN 代码: 1441-8730
俄罗斯联邦, 8-2 Trubetskaya street, 119991 Moscow
Anfisa Lepekhova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: anfisa.lepehova@yandex.ru
ORCID iD: 0000-0002-4365-3090
SPIN 代码: 3261-3520
MD, Cand. Sci. (Medicine), Associate Professor
俄罗斯联邦, 8-2 Trubetskaya street, 119991 MoscowTatiana Fedotcheva
The Russian National Research Medical University named after N.I. Pirogov
Email: tfedotcheva@mail.ru
ORCID iD: 0000-0003-4998-9991
SPIN 代码: 1261-5650
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowDarya Ulchenko
The Russian National Research Medical University named after N.I. Pirogov
Email: motci@list.ru
ORCID iD: 0009-0008-1894-5746
SPIN 代码: 9735-2364
俄罗斯联邦, Moscow
参考
- Olisova OY, Teplyuk NP. Illustrated guide to dermatology for preparation of doctors for accreditation. Moscow: GEOTAR-Media; 2023. 376 р. (In Russ).
- Makhneva VM, Teplyuk NP, Beletskaya LV. Autoimmune vesicle: From the origins of development to our days. Moscow: Resheniya; 2016. 308 р. (In Russ).
- Joly P, Litrowski N. Pemphigus group (vulgaris, vegetans, foliaceus, herpetiformis, brasiliensis). Clin Dermatol. 2011;29(4):432–436. doi: 10.1016/j.clindermatol.2011.01.013
- Amagai M, Tanikawa A, Shimizu T, et al. Committee for Guidelines for the Management of Pemphigus Disease. Japanese guidelines for the management of pemphigus. J Dermatol. 2014;41(6):471–486. doi: 10.1111/1346-8138.12486
- Kridin K. Pemphigus group: Overview, epidemiology, mortality, and comorbidities. Immunol Res. 2018;66(2):255–270. EDN: MOQLDI doi: 10.1007/s12026-018-8986-7
- Shamim T, Varghese VI, Shameena PM, Sudha S. Pemphigus vulgaris in oral cavity: Clinical analysis of 71 cases. Med Oral Patol Oral Cir Bucal. 2008;13(10):E622–E626.
- Pollmann R, Schmidt T, Eming R, Hertl M. Pemphigus: A comprehensive review on pathogenesis, clinical presentation and novel therapeutic approaches. Clin Rev Allergy Immunol. 2018;54(1):1–25. EDN: YEXVDV doi: 10.1007/s12016-017-8662-z
- Gonçalves GA, Brito MM, Salathiel AM, et al. Incidence of pemphigus vulgaris exceeds that of pemphigus foliaceus in a region where pemphigus foliaceus is endemic: Analysis of a 21-year historical series. An Bras Dermatol. 2011;86(6):1109–1112. doi: 10.1590/s0365-05962011000600007
- Harel-Raviv M, Srolovitz H, Gornitsky M. Pemphigus vulgaris: The potential for error. A case report. Spec Care Dentist. 1995;15(2):61–64. doi: 10.1111/j.1754-4505.1995.tb00478.x 20
- Morishima-Koyano M, Nobeyama Y, Fukasawa-Momose M, et al. Case of pemphigus foliaceus misdiagnosed as a single condition of erythrodermic psoriasis and modified by brodalumab. J Dermatol. 2020;47(5):e201–e202. doi: 10.1111/1346-8138.15295
- Daltaban Ö, Özçentik A, Karakaş A, et al. Clinical presentation and diagnostic delay in pemphigus vulgaris: A prospective study from Turkey. J Oral Pathol Med. 2020;49(7):681–686. doi: 10.1111/jop.13052
- Khamaganova IV, Malyarenko EN, Denisova EV, et al. Mistakes of diagnostics in pemphigus vulgaris: Case report. Russ J Skin Venereal Dis. 2017; 20(1):30–33. EDN: YGTAJL doi: 10.18821/1560-9588-2017-20-1-30-33
- Petrova SY, Berzhets VM, Radikova OV. Difficulties of differential diagnosis of blistering dermatoses. pemphigus erythematosus: A case from clinical practice. Immunopatol allergol infectol. 2017;(4):31–36. EDN: YWEQBI doi: 10.14427/jipai.2017.4.31
- Petruzzi M, Vella F, Squicciarini N, et al. Diagnostic delay in autoimmune oral diseases. Oral Dis. 2023;29(7):2614–2623. EDN: ZIUCAV doi: 10.1111/odi.14480
- Teplyuk NP, Kolesova YV, Mak DV, et al. Pemphigus: New approaches to diagnosis and disease severity assessment. Russ J Skin Venereal Dis. 2023;26(5):515–526. EDN: MSAHYT doi: 10.17816/dv492306
- Saha M, Bhogal B, Black MM, et al. Prognostic factors in pemphigus vulgaris and pemphigus foliaceus. Br J Dermatol. 2014;170(1):116–122. doi: 10.1111/bjd.12630
- Delavarian Z, Layegh P, Pakfetrat A, et al. Evaluation of desmoglein 1 and 3 autoantibodies in pemphigus vulgaris: Correlation with disease severity. J Clin Exp Dentistry. 2020;12(5):e440–e445. doi: 10.4317/jced.56289
- Russo I, De Siena FP, Saponeri A, Alaibac M. Evaluation of anti-desmoglein-1 and anti-desmoglein-3 autoantibody titers in pemphigus patients at the time of the initial diagnosis and after clinical remission. Medicine. 2017;96(46):e8801. doi: 10.1097/MD.0000000000008801
- Condrat CE, Thompson DC, Barbu MG, et al. MiRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells. 2020;9(2):276. EDN: OAGKOW doi: 10.3390/cells9020276
- O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402. EDN: HCLKYH doi: 10.3389/fendo.2018.00402
- Shu J, Silva BV, Gao T, et al. Dynamic and modularized microRNA regulation and its implication in human cancers. Sci Rep. 2017;7(1):13356. EDN: YKCIGN doi: 10.1038/s41598-017-13470-5
- Kozomara A, Griffiths-Jones S. MiRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.
- Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways: Nature reviews. Mol Cell Biol. 2019;20(1):5–20. doi: 10.1038/s41580-018-0059-1
- Long H, Wang X, Chen Y, et al. Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Letters. 2018;428:90–103. EDN: YGWIVF doi: 10.1016/j.canlet.2018.04.016
- Dai R, Ahmed SA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Translational research. J Lab Clin Med. 2011;157(4):163–179. doi: 10.1016/j.trsl.2011.01.007
- Wang Z, Lu Q, Wang Z. Epigenetic alterations in cellular immunity: New insights into autoimmune diseases. Cell Physiol Biochem. 2017;41(2):645–660. EDN: YFIBLS doi: 10.1159/000457944
- Weiland M, Gao XH, Zhou L, Mi QS. Small RNAs have a large impact: Circulating microRNAs as biomarkers for human diseases. RNA Biol. 2012;9(6):850–859. doi: 10.4161/rna.20378
- Valentino A, Leuci S, Galderisi U, et al. Plasma exosomal microRNA profile reveals miRNA 148a-3p downregulation in the mucosal-dominant variant of pemphigus vulgaris. Int J Mol Sci. 2023;24(14):11493. EDN: FABUJS doi: 10.3390/ijms241411493
- Khabou B, Fakhfakh R, Tahri S, et al. MiRNA implication in the pathogenesis and the outcome of Tunisian endemic pemphigus foliaceus. Exp Dermatol. 2023;32(7):1132–1142. doi: 10.1111/exd.14821
- He W, Xing Y, Li C, et al. Identification of six microRNAs as potential biomarkers for pemphigus vulgaris: From diagnosis to pathogenesis. Diagnostics (Basel, Switzerland). 2022;12(12):3058. EDN: ZZLOOJ doi: 10.3390/diagnostics12123058
- Xu M, Liu Q, Li S, et al. Increased expression of miR-338-3p impairs Treg-mediated immunosuppression in pemphigus vulgaris by targeting RUNX1. Exp Dermatol. 2020;29(7):623–629. doi: 10.1111/exd.14111
- Lin N, Liu Q, Wang M, et al. Usefulness of miRNA-338-3p in the diagnosis of pemphigus and its correlation with disease severity. Peer J. 2018;6:e5388. doi: 10.7717/peerj.5388
- Liu Q, Cui F, Wang M, et al. Increased expression of microRNA-338-3p contributes to production of Dsg3 antibody in pemphigus vulgaris patients. Mol Med Rep. 2018;18(1):550–556. EDN: VFMILM doi: 10.3892/mmr.2018.8934
- Wang M, Liang L, Li L, et al. Increased miR-424-5p expression in peripheral blood mononuclear cells from patients with pemphigus. Mol Med Rep. 2017;15(6):3479–3484. doi: 10.3892/mmr.2017.6422
- Satyam A, Khandpur S, Sharma VK, Sharma A. Involvement of T(h)1/T(h)2 cytokines in the pathogenesis of autoimmune skin disease: Pemphigus vulgaris. Immunol Invest. 2009;38(6):498–509. doi: 10.1080/08820130902943097
- Lee SH, Hong WJ, Kim SC. Analysis of serum cytokine profile in pemphigus. Ann Dermatol. 2017;29(4):438–445. doi: 10.5021/ad.2017.29.4.438
- Rizzo C, Fotino M, Zhang Y, et al. Direct characterization of human T cells in pemphigus vulgaris reveals elevated autoantigen-specific Th2 activity in association with active disease. Clin Experimental Dermatol. 2005;30(5):535–540. doi: 10.1111/j.1365-2230.2005.01836.x
- Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: Approaches and considerations. Nature Rev Genetics. 2012;13(5):358–369. doi: 10.1038/nrg3198
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262
- Buch AC, Kuma H, Panicker N, et al. A cross-sectional study of direct immunofluorescence in the diagnosis of immunobullous dermatoses. Indian J Dermatol. 2014;59(4):364–368. doi: 10.4103/0019-5154.135488
- Belloni-Fortina A, Faggion D, Pigozzi B, et al. Detection of autoantibodies against recombinant desmoglein 1 and 3 molecules in patients with pemphigus vulgaris: Correlation with disease extent at the time of diagnosis and during follow-up. Clin Dev Immunol. 2009;2009:187864. doi: 10.1155/2009/187864
- Giurdanella F, Nijenhuis AM, Diercks GF, et al. Keratinocyte binding assay identifies anti-desmosomal pemphigus antibodies where other tests are negative. Front Immunol. 2018;9:839. doi: 10.3389/fimmu.2018.00839
- Saleh MA, El-Bahy MM. Do normal Egyptians possess anti-desmoglein 3 antibodies? Int J Dermatol. 2015;54(10):1145–1149. doi: 10.1111/ijd.12662
- Xuan RR, Yang A, Murrell DF. New biochip immunofluorescence test for the serological diagnosis of pemphigus vulgaris and foliaceus: A review of the literature. Int J Women’s Dermatol. 2018;4(2):102–108. doi: 10.1016/j.ijwd.2017.10.001
- Yang A, Xuan R, Melbourne W, et al. Validation of the BIOCHIP test for the diagnosis of bullous pemphigoid, pemphigus vulgaris and pemphigus foliaceus. J Eur Acad Dermatol Venereol. 2020;34(1):153–160. doi: 10.1111/jdv.15770
- Sanz-Rubio D, Martin-Burriel I, Gil A, et al. Stability of circulating exosomal miRNAs in healthy subjects. Sci Rep. 2018;8(1):10306. EDN: VHZDCQ doi: 10.1038/s41598-018-28748-5
- Matias-Garcia PR, Wilson R, Mussack V, et al. Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples. PLoS One. 2020;15(1):e0227648. doi: 10.1371/journal.pone.0227648
- Ward Gahlawat A, Lenhardt J, Witte T, et al. Evaluation of storage tubes for combined analysis of circulating nucleic acids in liquid biopsies. Int J Mol Sci. 2019;20(3):704. doi: 10.3390/ijms20030704
- Papara C, Zillikens D, Sadik CD, Baican A. MicroRNAs in pemphigus and pemphigoid diseases. Autoimmunity Rev. 2021;20(7):102852. EDN: BWVCMC doi: 10.1016/j.autrev.2021.102852
- Ramani P, Ravikumar R, Pandiar D, et al. Apoptolysis: A less understood concept in the pathogenesis of pemphigus vulgaris. Apoptosis. 2022;27(5-6):322–328. EDN: FRNMYI doi: 10.1007/s10495-022-01726-z
- Lee AY, Kim T, Kim JH. Understanding CD4+ T cells in autoimmune bullous diseases. Front Immunol. 2023;14():1161927. EDN: XEJLJM doi: 10.3389/fimmu.2023.1161927
- Araghi F, Dadkhahfar S, Robati RM, et al. The emerging role of T cells in pemphigus vulgaris: A systematic review. Clin Exp Med. 2023;23(4):1045–1054. EDN: AXVIWX doi: 10.1007/s10238-022-00855-8
- Rodriguez MS, Egaña I, Lopitz-Otsoa F, et al. The RING ubiquitin E3 RNF114 interacts with A20 and modulates NF-κB activity and T-cell activation. Cell Death Dis. 2014;5(8):e1399. doi: 10.1038/cddis.2014.366
- Yang P, Lu Y, Li M, et al. Identification of RNF114 as a novel positive regulatory protein for T cell activation. Immunobiol. 2014;219(6):432–439. EDN: SQZAYB doi: 10.1016/j.imbio.2014.02.002
补充文件
