ВИРУС ПАПИЛЛОМЫ ЧЕЛОВЕКА КАК ЭПИГЕНЕТИЧЕСКИЙ КОФАКТОР РАЗВИТИЯ РЯДА ЭПИТЕЛИАЛЬНЫХ НЕМЕЛАНОЦИТАРНЫХ НОВООБРАЗОВАНИЙ КОЖИ (ОБЗОР ЛИТЕРАТУРЫ)


Цитировать

Полный текст

Аннотация

В последние десятилетия интерес к роли вирусов папилломы человека (ВПЧ) неуклонно возрастает, что можно связать как с эволюцией методов молекулярно-генетической детекции, так и с широким распространением этой вирусной инфекции в популяции. Эпидемиологические и молекулярно-биологические данные позволяют предполагать, что ВПЧ рода beta способны вызывать развитие ряда эпителиальных немеланоцитарных новообразований кожи, однако данная взаимосвязь в настоящее время до конца ещё не изучена. Возможно, папилломавирусную инфекцию следует рассматривать с позиций коканцерогенеза с кумулятивным эффектом ультрафиолетового облучения, на что косвенно указывают как преимущественная локализация элементов на открытых участках кожи, так и высокие риски их злокачественного перерождения.

Об авторах

- Авад Жабер Махмуд Жабер

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский университет)

Email: jaberawad1987@yahoo.com
аспирант кафедры кожных венерических болезней ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский университет). 119991, г. Москва, Россия 119991, г. Москва, Россия

Е. С Снарская

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский университет)

119991, г. Москва, Россия

Список литературы

  1. Urbach F., et al. Ultraviolet radiation and skin cancer in man. In: Montagna W.R., Dobson L., eds. Carcinogenesis. New York: Рergamon Рress; 1966.
  2. Кладова А.Ю., Куевда Д.А., Молочков В.А., Шипулина О.Ю., Киселев В.И., Хлебникова А.Н., Козлова Е.С. Встречаемость кожных типов вирусов папилломы человека в патологиях кожи. Альманах клинической медицины. 2006; (9): 44-50.
  3. Marcuzzi G.P., Hufbauer M., Kasper H.U., Weißenborn S.J., Smola S., Pfister H. Spontaneous tumour development in human papillomavirus type 8 E6 transgenic mice and rapid induction by UV-light exposure and wounding. J. Gen. Virol. 2009; 90(Pt 12): 2855-64.
  4. Beissert S., Loser K. Molecular and cellular mechanisms of photocarcinogenesis. Photochem. Photobiol. 2008; 84(1): 29-34.
  5. Morales-Ducret C.R., van de Rijn M., LeBrun D.P., Smoller B.R. Bcl-2 expression in primary malignancies of the skin. Arch. Dermatol. 1995; 131(8): 909-12.
  6. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Human Papillomaviruses. Lyon; 2007. vol. 90.
  7. Снарская Е.С., Борисова А.И., Чанглян К.А. Развитие множественных опухолей различного генеза в процессе фотостарения кожи. Российский журнал кожных и венерических болезней. 2011; 14(4): 13-8.
  8. Олисова О.Ю., Громова С.А., Смиренная В.А. Фотостарение кожи: современный взгляд на проблему (лекция). Российский журнал кожных и венерических болезней. 2010; 13(2): 58-62.
  9. Копнин Б.П. Опухолевые супрессоры и мутаторные гены. Москва: НИИ канцерогенеза ФГБУ Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина Минздрава РФ; 2013. Доступно на: http://www.rosoncoweb.ru/library/pub/02/
  10. Rittie L., Fisher G.J. UV-light-induced signal cascades and skin aging. Ageing Res. Rev. 2002; 1(4): 705-20.
  11. Herman J.G. Epigenetic changes in cancer and preneoplasia. Cold Spring Harb. Symp. Quant. Biol. 2005; 70: 329-33.
  12. Pandel R., Poljsak B., Godic A., Dahmane R. Skin photoaging and the role of antioxidants in its prevention. ISRN Dermatol. 2013; 2013: 930164. http://dx.doi.org/10.1155/2013/930164.
  13. Снарская Е.С. Фотостарение кожи: современные аспекты. Вестник дерматологии и венерологии. 2011; (2): 98-103.
  14. Pfister H. HPV and skin neoplasia. Hautarzt. 2008; 59(1): 26-30.
  15. Martires K.J., Fu P., Polster A.M., Cooper K.D., Baron E.D. Factors that affect skin aging: a cohort-based survey on twins. Arch. Dermatol. 2009;145(12): 1375-9.
  16. Pinkus H., Mehregan A.H. Premalignant skin lesions. Clin. Plast. Surg. 1980; 7(3): 289-300.
  17. Bedard K.M., Underbrink M.P., Howie H.L., Galloway D.A. The E6 oncoproteins from human beta papillomaviruses differentially activate telomerase through an E6AP-dependent mechanism and prolong the lifespan of primary keratinocytes. J. Virol. 2008; 82(8): 3894-902.
  18. Thomas M., Banks L. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene. 1998; 17(23): 2943-54.
  19. Jackson S., Harwood C., Thomas M., Banks L., Storey A. Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev. 2000; 14(23): 3065-73.
  20. Iftner A., Klug S.J., Garbe C., Blum A., Stancu A., Wilczynski S.P., Iftner T. The prevalence of human papillomavirus genotypes in nonmelanoma skin cancers of nonimmunosuppressed individuals identifies high-risk genital types as possible risk factors. Cancer Res. 2003; 63(21): 7515-9.
  21. Giampieri S., Storey A. Repair of UV-induced thymine dimers is compromised in cells expressing the E6 protein from human papillomaviruses types 5 and 18. Br. J. Cancer. 2004; 90(11): 2203-9.
  22. Akgul B., Garcia-Escudero R., Ghali L., Pfister H.J., Fuchs P.G., Navsaria H., Storey A. The E7 protein of cutaneous human papillomavirus type 8 causes invasion of human keratinocytes into the dermis in organotypic cultures of skin. Cancer Res. 2005; 65(6): 2216-23.
  23. Lazarczyk M., Pons C., Mendoza J.A., Cassonnet P., Jacob Y., Favre M. Regulation of cellular zinc balance as a potential mechanism of EVER-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. J. Exp. Med. 2008; 205(1): 35-42.
  24. Forslund O., DeAngelis P.M., Beigi M., Schjølberg A.R., Clausen O.P. Identification of human papillomavirus in keratoacanthomas. J. Cutan. Pathol. 2003; 30(7): 423-9.
  25. Mallitt K.A., O’Rourke P., Bouwes Bavinck J.N., Abeni D., de Koning M.N.C., Feltkamp M.C.W., et al.; The Epi-Hpv-Uv-Ca Group. An analysis of clustering of betapapillomavirus antibodies. J. Gen. Virol. 2010; 91(Pt 8): 2062-7.
  26. Casabonne D., Michael K.M., Waterboer T., Pawlita M., Forslund O., Burk R.D., et al. A prospective pilot study of antibodies against human papillomaviruses and cutaneous squamous cell carcinoma nested in the Oxford component of the European Prospective Investigation into Cancer and Nutrition. Int. J. Cancer. 2007; 121(8): 1862-8.
  27. Casabonne D., Lally A., Mitchell L., Michael K.M., Waterboer T., Pawlita M., et al. A case-control study of cutaneous squamous cell carcinoma among Caucasian organ transplant recipients: the role of antibodies against human papillomavirus and other risk factors. Int. J. Cancer. 2009; 125(8): 1935-45.
  28. Karagas M.R., Nelson H.H., Sehr P., Waterboer T., Stukel T.A., Andrew A., et al. Human papillomavirus infection and incidence of squamous cell and basal cell carcinomas of the skin. J. Natl. Cancer Inst. 2006; 98(6): 389-95.
  29. Andersson K., Waterboer T., Kirnbauer R., Slupetzky K., Iftner T., de Villiers E.M., et al. Seroreactivity to cutaneous human papillomaviruses among patients with nonmelanoma skin cancer or benign skin lesions. Cancer Epidemiol. Biomarkers Prev. 2008; 17(1): 189-95.
  30. Bouvard V., Baan R., Straif K., Grosse Y., Secretan B., El Ghissassi F., et al.; WHO International Agency for Research on Cancer Monograph Working Group. A review of human carcinogens-Part B: biological agents. Lancet Oncol. 2009; 10(4): 321-2.
  31. Burgers W.A., Blanchon L., Pradhan S., de Launoit Y., Kouzarides T., Fuks F. Viral oncoproteins target the DNA methyltransferases. Oncogene. 2007; 26(11): 1650-5.
  32. Herman J.G. Epigenetic changes in cancer and preneoplasia. Cold Spring Harb. Symp. Quant. Biol. 2005; 70: 329-33.
  33. Киселев В.И., Ашрафян Л.А, Бударина С.О., Киселев О.И., Пальцев М.А., Кулаков В.И., Прилепская В.Н. Этиологическая роль вируса папилломы человека в развитии рака шейки матки: генетические и патогенетические механизмы, возможности терапии и профилактики. Гинекология. 2004; 6(4): 174-80.
  34. Shamanin V., Glover M., Rausch C., Proby C., Leigh I.M., zur Hausen H., de Villiers E.M. Specific types of human papillomavirus found in benign proliferations and carcinomas of the skin in immunosuppressed patients. Cancer Res. 1994; 54(17): 4610-3.
  35. Harwood C.A., Surentheran T., McGregor J.M., Spink P.J., Leigh I.M., Breuer J., Proby C.M. Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J. Med. Virol. 2000; 61(3): 289-97.
  36. Forslund O., DeAngelis P.M., Beigi M., Schjølberg A.R., Clausen O.P. Identification of human papillomavirus in keratoacanthomas. J. Cutan. Pathol. 2003; 30(7): 423-9.
  37. de Villiers E.M., Lavergne D., McLaren K., Benton E.C. Prevailing papillomavirus types in non-melanoma carcinomas of the skin in renal allograft recipients. Int. J. Cancer. 1997; 73(3): 356-61.
  38. Meyer T., Arndt R., Christophers E., Stockfleth E. Frequency and spectrum of HPV types detected in cutaneous squamous-cell carcinomas depend on the HPV detection system: a comparison of four PCR assays. Dermatology. 2000; 201(3): 204-11.
  39. zur Hausen H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J. Natl. Cancer Inst. 2000; 92(9): 690-8.
  40. Durst M., Bosch F.X., Glitz D., Schneider A., zur Hausen H. Inverse relationship between human papillomavirus (HPV) type 16 early gene expression and cell differentiation in nude mouse epithelial cysts and tumors induced by HPV-positive human cell lines. J. Virol. 1991; 65(2): 796-804.
  41. Meibodi N.T., Nahidi Y., Meshkat Z., Esmaili H., Gharib M., Gholoobi A. No evidence of human papillomaviruses in non-genital seborrheic keratosis. Indian J. Dermatol. 2013; 58(4): 326.
  42. Forslund O., DeAngelis P.M., Beigi M., Schjolberg A.R., Clausen O.P. Identification of human papillomavirus in keratoacanthomas. J. Cutan. Pathol. 2003; 30(7): 423-9.
  43. Sanchez-Lanier M., Triplett C., Campion M. Possible role for human papillomavirus 16 in squamous cell carcinoma of the finger. J. Med. Virol. 1994; 44(4): 369-78.
  44. Ramoz N., Taieb A., Rueda L.A., Montoya L.S., Bouadjar B., Favre M., Orth G. Evidence for a nonallelic heterogeneity of epidermodysplasia verruciformis with two susceptibility loci mapped to chromosome regions 2p21-p24 and 17q25. J. Invest. Dermatol. 2000; 114(6): 1148-53.
  45. Ramoz N., Rueda L.A., Bouadjar B., Montoya L.S., Orth G., Favre M. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat. Genet. 2002; 32(4): 579-81.
  46. Orth G. Genetics of epidermodysplasia verruciformis: Insights into host defense against papillomaviruses. Semin. Immunol. 2006; 18(6): 362-74.
  47. Jacyk W.K., Dreyer L., de Villiers E.M. Seborrheic keratoses of black patients with epidermodysplasia verruciformis contain human papillomavirus DNA. Am. J. Dermatopathol. 1993; 15(1): 1-6.
  48. Li Y.H., Chen G., Dong X.P., Chen H.D. Detection of epidermodysplasia verruciformis-associated human papillomavirus DNA in nongenital seborrhoeic keratosis. Br. J. Dermatol. 2004; 151(5): 1060-5.
  49. Feltkamp M.C., Broer R., di Summa F.M., Struijk L., van der Meijden E., Verlaan B.P., et al. Seroreactivity to epidermodysplasia verruciformis-related human papillomavirus types is associated with nonmelanoma skin cancer. Cancer Res. 2003; 63(10): 2695-700.
  50. Roncalli de Oliveira W., Neto C.F., Rady P.L., Tyring S.K. Seborrheic keratosis-like lesions in patients with epidermodysplasia verruciformis. J. Dermatol. 2003; 30(1): 48-53.
  51. Asgari M.M., Kiviat N.B., Critchlow C.W., Stern J.E., Argenyi Z.B., Raugi G.J. еt al. Detection of human papillomavirus DNA in cutaneous squamous cell carcinoma among immunocompetent individuals. J. Invest. Dermatol. 2008; 128(6): 1409-17.
  52. Berkhout R.J., Bouwes Bavinck J.N., ter Schegget J. Persistence of human papillomavirus DNA in benign and (pre)malignant skin lesions from renal transplant recipients. J. Clin. Microbiol. 2000; 38(6): 2087-96.
  53. Astori G., Lavergne D., Benton C., Hockmayr B., Egawa K., Garbe C., еt al. Human papillomaviruses are commonly found in normal skin of immunocompetent hosts. J. Invest. Dermatol. 1998; 110(5): 752-5.
  54. de Jong-Tieben L.M., Berkhout R.J., ter Schegget J., Vermeer B.J., de Fijter J.W., Bruijn J.A., еt al. The prevalence of human papillomavirus DNA in benign keratotic skin lesions of renal transplant recipients with and without a history of skin cancer is equally high: a clinical study to assess risk factors for keratotic skin lesions and skin cancer. Transplantation. 2000; 69(1): 44-9.
  55. de Villiers E.M., Lavergne D., McLaren K., Benton E.C. Prevailing papillomavirus types in non-melanoma carcinomas of the skin in renal allograft recipients. Int. J. Cancer. 1997; 73(3): 356-61.
  56. Wieland U., Ritzkowsky A., Stoltidis M., Weissenborn S., Stark S., Ploner M., et al. Communication: papillomavirus DNA in basal cell carcinomas of immunocompetent patients: an accidental association? J. Invest. Dermatol. 2000; 115(1): 124-8.
  57. Robson R., Cecka J.M., Opelz G., Budde M., Sacks S. Prospective registry-based observational cohort study of the long-term risk of malignancies in renal transplant patients treated with mycophenolate mofetil. Am. J. Transplant. 2005; 5(12): 2954-60.
  58. Snijders P., Chris J. The value of viral load in HPV detection in screening. HPV today. 2006; 8: 8-9.
  59. Majewski S., Jablonska S. Human papillomavirus-associated tumors of the skin and mucosa. J. Am. Acad. Dermatol. 1997; 36(5): 659-85.
  60. Klaes R., Woerner S.M., Ridder R., Wentzensen N., Duerst M., Schneider A., et al. Detection of high-risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes. Cancer Res. 1999; 59(24): 6132-6.
  61. Pett M.R., Alazawi W.O., Roberts I., Dowen S., Smith D.I., Stanley M.A., Coleman N. Acquisition of high-level chromosomal instability is associated with integration of human papillomavirus type 16 in cervical keratinocytes. Cancer Res. 2004; 64(4): 1359-68.
  62. Bertoli P., Tarantello M., Montesco M.C., Veller Fornasa C. Detection of human papillomavirus in lesions of a patient with dermatosis papulosa nigra. Acta Dermatoven APA. 2004; 13(2): 63-5.
  63. Giampieri S., Storey A. Repair of UV-induced thymine dimers is compromised in cells expressing the E6 protein from human papillomaviruses types 5 and 18. Br. J. Cancer. 2004; 90(11): 2203-9.
  64. Quint K.D., Genders R.E., de Koning M.N., Borgogna C., Gariglio M., Bouwes Bavinck J.N., et al. Human Beta-papillomavirus infection and keratinocyte carcinomas. J. Pathol. 2015; 235(2): 342-54.
  65. Schaper I.D., Marcuzzi G.P., Weissenborn S.J., Kasper H.U., Dries V., Smyth N., et al. Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8. Cancer Res. 2005; 65(4): 1394-400.
  66. Harwood C.A., Surentheran T., McGregor J.M., Spink P.J., Leigh I.M., Breuer J., Proby C.M. Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J. Med. Virol. 2000; 61(3): 289-97.
  67. Euvrard S., Kanitakis J., Claudy A. Skin cancers after organ transplantation. N. Engl. J. Med. 2003; 348(17): 1681-91.
  68. Bouwes Bavinck J.N., Euvrard S., Naldi L., Nindl I., Proby C.M., Neale R., Abeni D., et al.; EPI-HPV-UV-CA group. Keratotic skin lesions and other risk factors are associated with skin cancer in organ-transplant recipients: a case-control study in The Netherlands, United Kingdom, Germany, France, and Italy. J. Invest. Dermatol. 2007; 127(7): 1647-56.
  69. Gassenmaier A., Fuchs P., Schell H., Pfister H. Papillomavirus DNA in warts of immunosuppressed renal allograft recipients. Arch. Dermatol. Res. 1986; 278(3): 219-23.
  70. Beissert S., Loser K. Molecular and cellular mechanisms of photocarcinogenesis. Photochem. Photobiol. 2008; 84(1): 29-34.
  71. Hopfl R.M., Schir M.M., Fritsch P.O. Keratoacanthomas: human papillomavirus associated. Arch. Dermatol. 1992; 128(4): 563-4.
  72. Waterboer T., Abeni D., Sampogna F., Rother A., Masini C., Sehr P., et al. Serological association of beta and gamma human papillomaviruses with squamous cell carcinoma of the skin. Br. J. Dermatol. 2008; 159(2): 457-9.
  73. Waterboer T., Neale R., Michael K.M., Sehr P., de Koning M.N.C., Weißenborn S.J., et al.; The Epi-Hpv-Uv-Ca Group. Antibody responses to 26 skin human papillomavirus types in the Netherlands, Italy and Australia. J. Gen. Virol. 2009; 90(Pt 8): 1986-98.
  74. Weissenborn S.J., Nindl I., Purdie K., Harwood C., Proby C., Breuer J., еt al. Human papillomavirus-DNA loads in actinic keratoses exceed those in non-melanoma skin cancers. J. Invest. Dermatol. 2005; 125(1): 93-7.
  75. Beissert S., Loser K. Molecular and cellular mechanisms of photocarcinogenesis. Photochem. Photobiol. 2008; 84(1): 29-34.
  76. Sallam M.A., Kamel M.M., Missiry A.G.E., Helal M.F. Detection of some types of human papillomaviruses in skin tags. Sci. J. Al-Azhar Med. 2003; 24: 311-7.
  77. Gupta S., Aggarwal R., Gupta S., Arora S.K. Human papillomavirus and skin tags: is there any association? Indian J. Dermatol. Venereol. Leprol. 2008; 74(3): 222-5.
  78. Zhao Y.K., et al. Human papillomavirus (HPV) infection in seborrheic keratosis. Am. J. Dermatopathol. 1989; 11(3): 209-12.
  79. Gushi A., Kanekura T., Kanzaki T., Eizuru Y. Detection and sequences of human papillomavirus DNA in nongenital seborrhoeic keratosis of immunopotent individuals. J. Dermatol. Sci. 2003; 31(2): 143-9.
  80. Tsambaos D., Monastirli A., Kapranos N., Georgiou S., Pasmatzi E., Stratigos A., et al. Detection of human papillomavirus DNA in nongenital seborrhoeic keratoses. Arch. Dermatol. Res. 1995; 287(6): 612-5.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2019


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».